Abstract:
An improved light-emitting panel having a plurality of micro-components sandwiched between two substrates is disclosed. Each micro-component contains a gas or gas-mixture capable of ionization when a sufficiently large voltage is supplied across the micro-component via at least two electrodes. An improved method of manufacturing a light-emitting panel is also disclosed, which uses a web fabrication process to manufacturing light-emitting displays as part of a high-speed, continuous inline process.
Abstract:
A vacuum envelope includes a first substrate provided with an image display surface and a second substrate opposed to the first substrate with a gap and provided with a plurality of electron sources. The second substrate is formed of a metal substrate, of which a setting surface provided with the electron sources is covered by an insulating layer.
Abstract:
A neutralizing method and a neutralizing apparatus for effectively neutralizing an insulating member in a simple and efficient way are disclosed. A hard X-ray generating device radiates a hard X-ray on the obverse surface of the insulating member from the direction perpendicular to the obverse surface of the insulating member. The hard X-ray generating apparatus radiates a hard X-ray having the wavelength of not less than 0.05 Å but less than 1 Å. The hard X-ray ionizes the air on the obverse surface of the insulating member and neutralizes the charge on the obverse surface of the insulating member, while at the same time neutralizing the charge on the reverse surface of the insulating member by the X-ray transmitted through the insulating member.
Abstract:
A non-evaporation getter material suitable for non-evaporation getters disposed in electron devices, such as fluorescent luminous tubes. The getter material is sized and shaped to more efficiently absorb gases actively at low temperatures.
Abstract:
A vacuum envelope includes a first substrate provided with an image display surface and a second substrate opposed to the first substrate with a gap and provided with a plurality of electron sources. The second substrate is formed of a metal substrate, of which a setting surface provided with the electron sources is covered by an insulating layer.
Abstract:
A pattern forming apparatus (1) comprises an ejection part (41) for ejecting a patterning material to a main surface of a substrate (9) from a plurality of outlets. The ejection part (41) moves relative to the substrate (9) in a direction along the main surface of the substrate (9) by a stage moving mechanism (2) and a plurality of linear pattern elements are formed on the substrate (9). In forming the linear pattern elements, moving speed of the plurality of outlets relative to the substrate (9) is changed periodically by an outlets moving mechanism (44) and gnarl portions each of which spreads in a direction perpendicular to a direction extending the linear pattern elements (91) are formed in each linear pattern element (91). This makes it possible to form a pattern similar to parallel crosses on the substrate 9 appropriately while ejecting the patterning material from the plurality of outlets.
Abstract:
A PDP with superior light-emitting characteristics and color reproduction is achieved by setting the chromaticity coordinate y (the CIE color specification) of light to 0.08 or less, more preferably to 0.07 or less, or 0.06 or less, enabling the color temperature of light to be set to 7,000K or more, and further to 8,000K or more, 9,000K or more, or 10,000K or more. The PDP is manufactured by a method in which the processes for heating the fluorescent substances such as the fluorescent substance baking, sealing material temporary baking, bonding, and exhausting processes are performed in the dry gas atmosphere, or in an atmosphere in which a dry gas is circulated at a pressure lower than the atmospheric pressure. This PDP is also manufactured by: a method in which after the front and back panels are bonded together, the exhausting process for exhausting gas from the inner space between panels is started while the panels are not cooled to room temperature; or a method in which after the front and back panels are temporarily baked, the process for bonding the panels is started while the panels are not cooled to room temperature. This reduces the time and energy required for heating, resulting in reduction of manufacturing cost.
Abstract:
A microstructured assembly including a barrier portions and land portions is described. The microstructures have alternating barrier portions and land portions that have barrier surfaces and land surfaces, respectively. Each barrier surface and land surface is connected by curved surface, which is part of a curved portion. The curved surface and the land surface are substantially continuous.
Abstract:
The present invention relates to plasma display panel and manufacturing method thereof to simplify the manufacturing steps and reduce cost of production. In the present invention, a black layer formed between a transparent electrode and a bus electrode is formed together with a black matrix at the same time. In this case, the black layer is formed together with the black matrix in one. Cheap nonconductive oxide is used as a black powder of a black layer. Specifically, in case the black layer and the black matrix are formed in one, the bus electrode is shifted to a non-discharge area to improve the brightness of the plasma display panel.
Abstract:
The present invention provides a gas discharge panel on which color images are accurately displayed and which is easy to manufacture. The first and the second substrates face each other across an interval, forming a discharge space in between, which is filled with a discharge gas. Pairs of electrodes for sustaining discharge are provided on at least one of the two substrates, and phosphor layers are formed on the first substrate, arranged along the electrode pairs to form a matrix of discharge cells. An image is displayed by selectively illuminating discharge cells. Gap members having a given shape are provided between the first and second substrates at locations corresponding to the boundaries between discharge cells.