Abstract:
A self-lubricating bearing system, including a sliding bearing (1), an oil-storage groove (2), and lubricating oil (3). The oil-storage groove (2) is disposed in the sliding bearing (1). The lubricating oil (3) is disposed in the oil-storage groove (2). A housing (4) is fit on the sliding bearing (1). The housing (4) extends from front end surface of the sliding bearing (1). The top of the housing (4) bends inwards to form an oil-return barb (5). A retaining ring (9) is disposed on the front end surface of the sliding bearing (1). An oil-return hole (10) is formed between the retaining ring (9) and the sliding bearing (1). The oil-return hole (10) is connected to the oil-storage groove (2).
Abstract:
A housing assembly 30 is provided for a permanent magnet motor. The housing assembly includes a ferrous flux ring structure 38 having an exterior 39 and an interior 36. Magnet structure 34 is carried within the interior of the flux ring structure 38. A plastic housing 32 substantially encapsulates the exterior of the flux ring structure 38 and at least portions of the magnet structure 34. A bearing 42 may be provided in a closed end of the housing 32.
Abstract:
Axial bearing wear in a motor is determined by differencing signals from special coils in the two ends of the motor stator. The signals on the two coils vary in opposite directions with axial displacement of the motor rotor. A dead zone circuit suppresses output when the axial displacement of the rotor is within the normal range of play for the rotor of the particular motor. When the axial displacement exceeds the normal range, the output actuates an indicator in relation to the magnitude of the displacement in excess of the normal range. Sequential LED indicators indicate both magnitude and direction of excess displacement. An analog meter is also disclosed which indicates only the magnitude of the excess displacement.
Abstract:
A disk storage drive is provided with a brushless drive motor having a stator with a winding. An external rotor coaxially surrounds the stator and is spaced therefrom by a substantially cylindrical air gap. The rotor includes a permanent magnet and a soft magnetic yoke. A hub is provided that is concentric to the yoke and is connected to the rotor for rotation therewith. The hub has a disk mounting portion on its outer peripheral surface that can be passed through the central opening of a standardized storage disk for mounting the storage disks for rotation therewith. At least half of the axial longitudinal dimension of the stator winding and the rotor magnet interacting therewith is housed within the disk mounting portion of the hub. The hub is made from a non-ferromagnetic material that is suitable for storage drive clean chamber use after dimensional finishing of the hub.
Abstract:
An apparatus for rotatably journaling a rotor of a flat spindle motor about a stator comprising a spindle magnet disc disposed on the rotor assembly of the flat spindle motor and journaled about the spindle motor shaft having a disc shaped first magnetized region with an outer radius r comprised of a plurality of axial aligned poles, a disc shaped second region having an outer radius r2 (where r2>r) comprised of a single pole, and a disc shaped non-magnetized spacer region disposed there between. The integrated spindle magnet disc is disposed on the inside surface of a rotor over complementary axially aligned electromagnet poles which are disposed on the base of the stator assembly. A like aligned single pole is fixedly attached to the stator and disposed in opposition to the second magnetized region having like aligned pole of the integrated spindle permanent magnet. The single poles are disposed on both the rotor and stator in attraction mode with opposite poles facing one another, or in opposition mode with a complete or partial offset thereby forming a stable magnetic bearing for maintaining rotor displacement about the stator in conjunction with a conventional pivot. The stator base assembly is extended toward the first magnetized region to provide axial pre-load for the motor. The electromagnet poles further include a steel bobbin for increased flux density and added axial stiffness. Finally, eddy current generation means are disposed between the stator base and the like aligned single pole for improved dampening characteristics.
Abstract:
An apparatus for rotatably journaling a rotor of a flat spindle motor about a stator comprising a spindle magnet disc disposed on the rotor assembly of the flat spindle motor and journaled about the spindle motor shaft having a disc shaped first magnetized region with an outer radius r comprised of a plurality of axial aligned poles, a disc shaped second region having an outer radius r2 (where r2>r) comprised of a single pole, and a disc shaped non-magnetized spacer region disposed there between. The integrated spindle magnet disc is disposed on the inside surface of a rotor over complementary axially aligned electromagnet poles which are disposed on the base of the stator assembly. A like aligned single pole is fixedly attached to the stator and disposed in opposition to the second magnetized region having like aligned pole of the integrated spindle permanent magnet. The single poles are disposed on both the rotor and stator in attraction mode with opposite poles facing one another, or in opposition mode with a complete or partial offset thereby forming a stable magnetic beating for maintaining rotor displacement about the stator in conjunction with a conventional pivot. The stator base assembly is extended toward the first magnetized region to provide axial pre-load for the motor. The electromagnet poles further include a steel bobbin for increased flux density and added axial stiffness. Finally, eddy current generation means are disposed between the stator base and the like aligned single pole for improved dampening characteristics.
Abstract:
An electric motor housing assembly (10) for electromechanical drives in automobiles is injection molded from a resin material. An armature bearing (18), mounting holes (30), and a flux ring (38) are molded in place within a housing (12) so that inner cylindrical surfaces (20 and 40) of the armature bearing and flux ring are centered with respect to the mounting holes (30) along a central axis (34). Protrusions (52 and 52) are molded through openings in the flux ring (38) for holding permanent magnets (44 and 46) in place against the flux ring.
Abstract:
There is presented an electric motor having a drive shaft, an armature and commutator assembly fixed on the drive shaft, a housing disposed around the assembly, and an endframe fixed to the housing. The endframe is provided with a journal in which is mounted a bearing supporting the drive shaft. Further disposed in the endframe are brushes in contact with a commutator portion of the assembly, and brush tubes for supporting the brushes. A brush retainer is mounted on the journal and has a face portion overlying a face portion of the bearing. The journal is provided with ribs which extend axially of the retainer. The ribs are engaged with the retainer, which is plastic, and hold the retainer in non-rotative fashion with the retainer face portion abutting an end of the commutator portion.
Abstract:
A disk storage drive is provided with a brushless drive motor having a stator with a winding. An external rotor coaxially surrounds the stator and is spaced therefrom by a substantially cylindrical air gap. The rotor includes a permanent magnet and a soft magnetic yoke. A hub is provided that is concentric to the yoke and is connected to the rotor for rotation therewith. The hub has a disk mounting portion on its outer peripheral surface that can be passed through the central opening of a standardized storage disk for mounting the storage disks for rotation therewith. At least half of the axial longitudinal dimension of the stator winding and the rotor magnet interacting therewith is housed within the disk mounting portion of the hub. The hub is made from a non-ferromagnetic material that is suitable for storage drive clean chamber use after dimensional finishing of the hub.