Abstract:
A method and apparatus for estimating a channel in a wireless local area network (WLAN) are provided. A channel estimation apparatus may include a channel estimation information combiner to combine at least one channel estimation information based on a difference between cyclic delay diversity (CDD) values, and a phase applier to generate a first phase value and to apply the first phase value to the combined channel estimation information.
Abstract:
Methods and apparatus for interference coordination to improve transmission and reception performance within wireless networks. In one exemplary embodiment, a wireless transmitter transmits multiple transmissions over a determined time. The receiver receives the multiple transmissions and attempts to recover the transmitted signal. Because, the fading channel varies over time for each transmitter-receiver, by combining the received signals over multiple iterations, the signal of interest will be magnified, whereas interference effects will be suppressed.
Abstract:
A transmission apparatus includes a plurality of orthogonal frequency division multiplexing (OFDM) modulation signal generators, which generate a first OFDM modulation signal and a second OFDM modulation signal. The transmission apparatus also includes a transmitter that transmits the first OFDM modulation signal from a first antenna and the second OFDM modulation signal from a second antenna, in an identical frequency band. A reception apparatus is provided, which includes a plurality of antennas that receive a plurality of OFDM modulation signals; a plurality of OFDM demodulators that transform the plurality of OFDM modulation signals to a plurality of reception signals using Fourier transform; an estimator that outputs a distortion estimation signal using one or more symbols for demodulation included in the plurality of reception signals; and a demodulator that compensates for distortion of the reception signals using the distortion estimation signal and demodulates a data symbol included in the reception signals.
Abstract:
A system and method for compensating phase differences between multiple local oscillators and group delay differences between multiple transceivers. The system may include; an antenna array; a plurality of transceivers connected to said antennas and operatively associated each with a local oscillator (LO), wherein at least some of the transceivers do not share a common LO, and wherein at least some of the LOs are using a common reference oscillator; a common digital beamformer circuit connected to the transceivers; a baseband processor configured to operate the system at a specified communication scheme; and a calibration circuit and software modules configured to eliminate or reduce mismatches and phase deviations between the different transceivers, wherein the calibration circuit and software modules are incorporated in system such that the elimination or reduction of mismatches and phase deviations is non-interrupting with a continuous operation of the system at the specified communication scheme.
Abstract:
Data streams stored in buffers are modulated by modulation sections. Multipliers multiply the signals output from the modulation sections by weights output from a weight control section. The signals output from the multipliers are added up by addition sections, subjected to radio transmission processing by transmission radio sections and sent through antennas. A buffer control section controls the buffers based on a retransmission count output from a retransmission count detection section. The weight control section outputs weights different from weights at the time of previous transmission to the multipliers every time data is retransmitted. This allows a diversity gain at the time of data retransmission to be increased even if a time variation of the propagation path environment for radio signals is slow.
Abstract:
Aspects of the present invention provide additional MAC functionality to support the PHY features of a wireless communication system framework. The additional MAC functionality aids in enabling feedback from wireless terminals to base stations. In some aspects of the invention the feedback is provided on an allocated feedback channel. In other aspects of the invention the feedback is provided by MAC protocol data units (PDU) in a header, mini-header, or subheader. The feedback may be transmitted from the wireless terminal to the base station autonomously by the wireless terminal or in response to an indication from the base station that feedback is requested. Aspects of the invention also provide for allocating feedback resources to form a dedicated feedback channel. One or more of these enhancements is included in a given implementation. Base stations and wireless terminals are also described upon which methods described herein can be implemented.
Abstract:
A communication system to feed remote antenna nodes with simulcast traffic and non-simulcast beacons is provided. The communication system includes a host radio frequency (RF) digitizer, a delay buffer, a summing circuit, and a framer/serializer. The host RF digitizer receives CDMA base station signals for simulcast CDMA-traffic-bearing channels and to output digital samples. The delay buffer is communicatively coupled to receive the samples output from a beacon pilot generator and to output digitally delayed CDMA-digital-beacon-pilot samples having different pseudo-noise offsets. The summing circuit adds the CDMA-digital-beacon-pilot samples having different pseudo-noise offsets to the digital samples received from the host RF digitizer to form composite simulcast-plus-uniquely-offset-beacon-pilot CDMA samples. The framer/serializer is communicatively coupled to receive the composite simulcast-plus-uniquely-offset-beacon-pilot CDMA samples, and to route the composite simulcast-plus-uniquely-offset-beacon-pilot CDMA samples to an associated remote antenna node.
Abstract:
The present invention relates to a data transmission method in a radio communication system, comprising the steps of selecting a first reference transmission antenna of a first base station and a second reference transmission antenna of a second base station from among a plurality of base stations, transmitting a first transmission data stream via the first reference transmission antenna, transmitting a second transmission data stream via the second reference transmission antenna to a terminal, time-delaying the first transmission data stream and retransmitting the delayed first transmission data stream to the terminal via a transmission antenna of a first transmission group, and time-delaying the second transmission data stream and retransmitting the delayed second transmission data stream to the terminal via a transmission antenna of a second transmission group. Thus, co-channel interferences can be minimized, and the efficiency in using an antenna and the receiving performance thereof in a radio communication system adopting a multi-antenna technique and a multi-base station system can be improved at the same time.
Abstract:
The present invention discloses a method and apparatus for transmitting rank indication information, in which the method comprises: when rank indication information and a sounding reference signal are transmitted in a same sub-frame, loading the sounding reference signal to a last symbol of a sub-frame, and transmitting the rank indication information and the sounding reference signal. The present invention prevents destruction of orthogonality of codes between PUCCH channels when the rank indication information and the sounding reference signal are transmitted in the same sub-frame, thus the overall performance of the system can be ensured.
Abstract:
A transmitting entity performs spatial processing on data symbols for each subband with an eigenmode matrix, a steering matrix, or an identity matrix to obtain spatially processed symbols for the subband. The data symbols may be sent on orthogonal spatial channels with the eigenmode matrix, on different spatial channels with the steering matrix, or from different transmit antennas with the identity matrix. The transmitting entity further performs beamforming on the spatially processed symbols, in the frequency domain or time domain, prior to transmission from the multiple transmit antennas. A receiving entity performs the complementary processing to recover the data symbols sent by the transmitting entity. The receiving entity may derive a spatial filter matrix for each subband based on a MIMO channel response matrix for that subband and perform receiver spatial processing for the subband with the spatial filter matrix.