Abstract:
A method begins by a processing module determining a mapping of encoded data slices to wireless channels for wireless communication of data, wherein a data segment of the data is encoded in accordance with a dispersed storage error encoding protocol to produce a set of encoded data slices. The method continues with the processing module configuring, in accordance with the mapping, receivers of a wireless communication device to receive, via a set of wireless channels, at least some of the set of encoded data slices to produce configured receivers. The method continues with the processing module facilitating the configured receivers to receive encoded data slices of the set of encoded data slices to produce received encoded data slices and when at least a decode threshold number of received encoded data slices have been received, decoding the received encoded data slices to recapture the data segment.
Abstract:
A receiver for processing a received signal encoded with a codeword and mapped to two layers includes a plurality of equalizers for equalizing the received signal, a plurality of demodulators for demodulating a respective equalized signal, a decoder for decoding the demodulated signal by extracting soft bits from the demodulated signal, a modulator for modulating the decoded signal by generating soft symbols based on the extracted soft bits, a demapper for demapping the modulated signal to soft symbols corresponding to each of the two layers and a plurality of inter-layer interference cancellers for cancelling interference utilizing the demapped soft symbols wherein the demapped soft symbols are utilized also by the equalizers to reduce inter-symbol interference.
Abstract:
Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
Abstract:
Receiving an OFDM signal having a series of OFDM symbols, each having sub-carriers, each modulated by at least one data bit encoded with error-correcting code. The receiver has a first error-correcting decoder to decode sequentially data bits of a received first OFDM symbol; a re-encoder to receive decoded bits and re-encode a leading portion of the decoded bits; a mapper to receive the re-encoded leading portion of bits, map these bits to a corresponding subset of the sub-carriers, and thereby estimate a modulation symbol applied to each sub-carrier, by the transmitter; a channel estimator to produce a channel estimate by comparing sub-carrier modulation symbols with corresponding sub-carriers received by the receiver; and an equalizer to process the received signal to remove distortions from the transmission channel, using the channel estimate. The re-encoder begins re-encoding the leading portion of the bits before a trailing portion has been decoded.
Abstract:
A wireless device for implementing Incremental Redundancy (IR) operations includes system processing circuitry operable to perform Physical (PHY) layer operations, Media Access Control (MAC) layer operations and Radio Link Control (RLC) operations of the wireless device. The system processing circuitry further includes an IR control module for processing IR transactions related to a received RLC data block and for tracking an Automatic Repeat Request (ARQ) receiving state and received block bit map and a Layer 1 (L1) module for intercepting and diverting the IR transactions to the IR control module and for passing a correctly decoded RLC data block to the RLC layer operations via the MAC layer operations thereby automatically synchronizing the RLC layer operations. An IR processing module is coupled to the system processing circuitry to perform IR operations on the received RLC data block based upon a direction from the IR control module.
Abstract:
A method and apparatus for measuring channel quality over which has been transmitted a sequence of symbols produced by encoding and constellation mapping a source data element sequence. A sequence of received symbols is received over the channel. The sequence of received symbols is de-mapped based on a first channel quality indicator previously transmitted to a transmitter of the sequence of symbols. The de-mapped symbols are decoded to produce a decoded output sequence. In some embodiments, the decoding may be based on the first channel quality indicator. The decoded output sequence is re-encoded to produce a re-encoded output sequence. The de-mapped symbols are correlated with the re-encoded output sequence to produce a second channel quality indicator. The second channel quality indicator is transmitted to the transmitter to adaptively select a type of mapping based on the second channel quality indicator.
Abstract:
A decoding device that decodes demodulated data obtained by demodulating a quadrature modulated signal arising from digital modulation of a carrier and detects synchronization, the decoding device includes, a decoder configured to decode first demodulated data that is the demodulated data obtained by demodulating the quadrature modulated signal and is composed of in-phase axis data and quadrature axis data. The decoding device decodes second demodulated data obtained by interchanging the in-phase axis data and the quadrature axis data of the first demodulated data. A synchronization detector is configured to detect a boundary between predetermined information symbol sequences from first decoded data obtained by decoding the first demodulated data and detect the boundary from second decoded data obtained by decoding the second demodulated data. The synchronization detector selects and outputs one of the first decoded data and the second decoded data based on a result of the detection of the boundary.
Abstract:
A method and apparatus for adjusting a symbol decision threshold at a receiver in a communication network enables the receiver to be adapted to more correctly receive symbols as transmitted by a transmitter. In one embodiment, a received bit imbalance is detected by a receiver prior to error correction and after error correction to determine whether an error component of the received signal contains larger numbers of ones or larger numbers of zeros. Where the transmitter scrambles the signal prior to transmission, the receiver will also scramble the signal after error correction and prior to counting the number of zeros or ones. Any imbalance between the number of transmitted and received ones or zeros is used as feedback to adjust threshold values used by detectors to fine tune the manner in which the receiver interprets incoming signals.
Abstract:
A method includes the steps of: i) listing out all possibilities for first symbol of a two stream signal; ii) determining a second symbol of the two stream signal for each said first symbol listed out, iii) evaluating a metric for each said first symbol and second symbol pair, iv) determining the exact maximum log likelihood ratio for all bits associated with said first symbol using said metrics, v) decoding a codeword-1 using the maximum log likelihood ratios, vi) re-encoding said codeword-1, vii) modulating said re-encoded codeword-1, viii) subtracting said modulated re-encoded codeword-1 from said two stream signal, ix) determining metrics for all possibilities for second symbol in the signal obtained in viii, x) determining the maximum log likelihood ratios for all bits associated with second symbol, and xi) decoding said codeword-2 using the maximum log likelihood ratios for all bits associated with said second symbol.
Abstract:
Systems and methods are presented for measuring power levels of primary and interfering signals as well as noise, particularly for satellite transmitted signals. A typical method comprises the steps of receiving a signal comprising a primary signal, an interference signal and noise, demodulating the primary signal to remove a carrier frequency, decoding the primary signal to obtain symbols, estimating a power level of the primary signal based upon the demodulated and decoded primary signal. Additionally, an ideal primary signal can be generated from the carrier power and frequency and the symbols and subtracted from the received signal to produce the noise and interference signal. The noise and interference power is then estimated from the noise and interference signal.