Abstract:
A pneumatic tire has a tread rubber formed by a nonconductive rubber and a side wall rubber formed by the nonconductive rubber. An outer surface of the side wall rubber is provided with a band-like diametrical conductive portion which is formed by a conductive rubber and extends along a tire diametrical direction. An outer end of the diametrical conductive portion is exposed to a ground-contacting surface or is connected to a conductive rubber member which is exposed to the ground-contacting surface. An inner end of the diametrical conductive portion is exposed to a rim contact region or is connected to a rim strip rubber formed by the conductive rubber. A narrow groove is formed by depressing an outer surface of the diametrical conductive portion and extends in a tire diametrical direction in a side wall portion.
Abstract:
A pneumatic tire includes a non-conductive tread surface and has an electrically conductive rubber in a wave-like or other configuration arranged in a tire circumferential direction. The tire has an electrically conductive sidewall rubber. Upper portions of the wave-like conductive rubber configuration are on the tread surface, while lower portions of the wave-like rubber configuration contact the electrically conductive sidewall rubber. As the tread surface and the electrically conductive rubber on the tread surface are worn away through use, the diametrically outermost portion of the electrically conductive sidewall rubber of the tire comes into contact with the ground and maintains an effective electrically conductive path.
Abstract:
A tread rubber includes a cap portion formed by a nonconductive rubber, a base portion formed by a nonconductive rubber, and a conductive portion formed by a conductive rubber. A rubber hardness of the cap portion is higher than a rubber hardness of the base portion. The base portion is segmented in a tire width direction. A rubber forming the cap portion is filled in a recess at a segmented position. The conductive portion has a first portion which is provided in an outer side of the segmented position and extends to an inner side in the tire diametrical direction from the ground surface, and a second portion which is provided continuously in the first portion and extends in the tire width direction so as to run into the side surface or the bottom surface of the tread rubber.
Abstract:
In the invention, at least a tire outer circumferential side portion of a tread portion is formed of a non-conductive rubber layer. The non-conductive rubber layer is formed by winding and laminating a non-conductive rubber ribbon along a tire circumferential direction. A conductive layer is provided on an outer circumference of the non-conductive rubber ribbon, and the conductive layer continuously and spirally extends along the tire circumferential direction, and is exposed on a tread surface from a bottom surface of the non-conductive rubber layer toward a tire outer circumferential side. Accordingly, an electricity generated in a vehicle body is discharged to a road through the conductive layer. Since the conductive layer is scattered within the non-conductive rubber layer and exposure on the tread surface is preferably secured, it is possible to achieve an excellent conductivity.
Abstract:
A wheel for a cart has a static dissipative mechanism. The wheel has a hub that has a central bore for receiving one or more bearings. The outer periphery of the hub has a conductive ring that has projections extending radially outward. The projections are surrounded by a tread material. A conductive wire extends from the central bore where the bearings are, on the outside of the hub, to the conductive ring. A conductive path is provided for the cart through the bearings, the wire, the conductive ring to ground.
Abstract:
A pneumatic tire is equipped with at least a tread part, a sidewall part, a bead part, and a carcass extending from tread part through sidewall part to bead part, and provided with a breaker part on the outside of carcass in the radial direction of the tire. The volume resistivity of each of a tread rubber, a sidewall rubber, a breaker rubber, and a carcass rubber formed in the tread part, the sidewall part, the breaker part, and the carcass respectively is set to 1×1012 Ω·cm or more. A conductive layer having volume resistivity of 1×1011 Ω·cm or less is provided between a carcass ply constituting the carcass and the sidewall rubber and has an exposed part to the tire surface. A rubber cement layer contacting with at least a part of the exposed part of the conductive layer and at least a part of the region that becomes a grounding surface in the tread part to the road surface is provided.
Abstract:
This invention relates to a pneumatic rubber tire having a circumferential tread containing an outer tread rubber layer, wherein said outer tread rubber layer contains an outer tire running surface, comprised of an electrically insulating (poorly electrically conducting) rubber composition and wherein said tread additionally contains a circumferential tread component in a form of an inverted “T” configuration comprised of a relatively electrically conducting rubber composition (relative to said outer tread rubber strip) wherein the stem of said inverted “T” configured tread component extends through said outer tread rubber layer to its running surface to thereby provide a path of least electrical resistance through said outer tread strip to its running surface and wherein the base of said “T” configured tread component underlies a portion of said outer tread rubber layer and is less than, and therefore not entirely co-extensive with, the axial width of said outer tread rubber layer.
Abstract:
This invention relates to a pneumatic rubber tire which contains at least one electrically conductive cord extending between its bead portion and its tread portion to provide a path of least electrical resistance. The electrically conductive cord is comprised of at least one electrically conductive metal filament spirally wound around a centrally disposed core of at least one organic fiber. The electrically conductive cord extends from a rubber component in a bead portion of the tire which is relatively electrically conductive to a rubber component in the tread portion of the tire which is relatively electrically conductive in a manner that said electrically conductive cord does not extend to, and therefore is exclusive of, an outer surface of the tire. An electrically conductive path is thereby provided between a mounting surface of the tire in its bead region to a running surface of the tire tread. The electrically conductive cord may also be comprised of an electrically conductive metal filament, electrically conductive carbon fiber, or their combination, spirally wound around a core of at least one organic fiber.
Abstract:
A pneumatic tire constructed with an electrically conductive tire tread that defines a channel extending radially inward through a tread base rubber having a relatively high electrical resistivity so as to provide a conductivity path to a belt layer within the tire. In certain embodiments, a conductivity path extending from the belt layer through a belt cushion section to a carcass section of the tire is also provided.
Abstract:
The present invention concerns in particular an extruded profiled element consisting of a cross-linkable rubber composition, a process for obtaining this profiled element, and a tire tread based on the said extruded and cross-linked profiled element. An extruded profiled element according to the invention is delimited in width by two lateral faces which connect radially inner and outer faces to one another for the tread, conducting means being provided in the profiled element to connect the inner face electrically to the outer face between the lateral faces and all along the length of the profiled element, the remainder of the profiled element being based on an electrically insulating material. This profiled element is such that, viewed in a cross-section of the profiled element, the conducting means have a layered structure comprising electrically conducting layers which are essentially concentric and which have a curvature towards at least one of the inner and outer faces, with at least one of the layers emerging at the surface of the outer face. The application of the invention relates in particular to the quality of radio wave reception by a radio fitted on board a vehicle equipped with tires.