Abstract:
Provided are a power storage apparatus and a method of controlling the power storage apparatus. The power storage apparatus stores power supplied from a power generation system or a power grid. The power storage apparatus supplies stored power to a load during an electric failure, and supplies stored power to the power grid. The power storage apparatus includes at least one battery cell, a battery management unit coupled to the battery cell, a bi-directional converter coupled to the battery management unit, a bi-directional inverter coupled between the bi-directional converter and the power grid, and a central controller controlling the operations of the bi-directional converter, the bi-directional inverter, and the battery management unit. An uninterruptible power supply (UPS) function may be performed to stabilize the power storage system including the power storage apparatus.
Abstract:
A control circuit comprises a circuit adapted to determine a state of charge of a high side power source using a sensed output current to provide a variable gain signal based on the state of charge. The control circuit may also contain a circuit configured to provide a fixed gain signal based on the current of the high side power source and a circuit configured to combine the variable gain signal and the fixed gain signal to create a power command.
Abstract:
Methods and apparatus for providing uninterruptible power are provided by aspects of the invention. One aspect is more particularly directed to an uninterruptible power supply for providing power to a load. The uninterruptible power supply includes a first input to receive input power from an input power source, an output to provide output power, a bypass input to receive bypass power from a bypass power source, wherein the bypass input is selectively coupled to the output to provide output power from the bypass power source, an input power circuit coupled to the first input and having a DC output that provides DC power having a first DC voltage level, a back-up power source coupled to the input power circuit to provide DC power at the DC output in a back-up mode of operation, and an inverter circuit having an output coupled to the DC output of the input power circuit and having an output coupled to the output of the uninterruptible power supply to provide the output power derived from at least one of the input power source and the back-up power source. The uninterruptible power supply is constructed and arranged in a bypass mode of operation to control the inverter circuit to convert AC power from the bypass power source at the output of the inverter circuit to DC power at the input of the inverter circuit.
Abstract:
A charging device has an electric accumulator (20) formed by a plurality of series-connected electric accumulator cells (E1, E2, . . . , En), one electrode of any one of the electric accumulator cells being used as a reference potential of the electric accumulator (20); at least one capacitor (C1) having one end fixed to the potential of one electrode of each of the electric accumulator cells (E1, E2, . . . , En) or fixed to the potential of the other electrode of any one of the electric accumulator cells (E1, E2, . . . , En) through a rectifying means (D11, D12); and a periodical power source (30) connected between the capacitor (C1) and the reference potential of the electric accumulator to generate repetitive signals.
Abstract:
A control system for an energy production facility includes a plant controller for receiving an indication of a measured power output of the energy production facility that includes power generators and produces output signals. The system also includes a processing unit operably coupled to the plant controller and responsive to executable computer instructions when executed on the processing unit cause the plant controller to: create an output signal that causes an energy storage device to discharge in the event power reserves of the power generators can not met the requested ramp down rate; and create an output signal that causes the energy storage device to charge up in the event that the power capability of the power generators can meet the requested ramp down rate.
Abstract:
In one technique of the present invention, DC electric power from a DC bus is inverted to provide AC electricity to one or more electrical loads, and AC power from a variable speed generator is rectified to provide a first variable amount of electric power to the DC bus. This technique also includes determining power applied to the electrical loads, and dynamically controlling the amount of power supplied from the generator and an electrical energy storage device in response to the power applied to the loads.
Abstract:
A load is powered by a power source and a capacitive element in series such that the voltage provided to the load is the sum of the voltages of the power source and the capacitive element. A power converter imposing a limit on a flow of current through at least a portion of the power converter is coupled to the power source and the capacitive element, and selectively causes the capacitive element to either be charged or to discharge depending on the amount of current drawn by the load. As the capacitor discharges, the power source is permitted to supply a relatively higher amount of current to the load.
Abstract:
Systems, apparatus, and methods are provided for maintaining the state of charge of energy storage devices such as batteries, flywheel, capacitors, or other technologies that are energetically coupled with the electricity grid to support ancillary services. To reliably respond to requests to regulate the grid, the charge on the energy storage device is sustained or restored to a specified range in a manner that optimizes the readiness of the energy storage device to supply ancillary services in light of the condition of the grid. A state of charge (SOC) of the energy storage device and the grid frequency may be monitored. When a request from the operator to regulate the grid frequency is not being serviced, the charge of the energy storage device may be increased or decreased so that the charge may be sustained within the specific range. Once the SOC falls outside of the first range, charge may be added to or removed from the energy storage device when the grid frequency has appropriate values, e.g. if the grid frequency is respectively above a first setpoint or below a second setpoint.
Abstract:
In various embodiments, various systems and methods are provided for power storage. In one embodiment, a power storage apparatus is described that comprises a power multiplier having a multiply-connected electrical structure. A parametric reactance is included in the multiply-connected electrical structure that negates at least a portion of a physical resistance of the multiply-connected electrical structure. A parametric excitation source having a parametric excitation output is applied to the parametric reactance.
Abstract:
Methods and apparatus for providing uninterruptible power are provided by aspects of the invention. One aspect is more particularly directed to an uninterruptible power supply for providing power to a load. The uninterruptible power supply includes an input to receive input power, an output to provide output power, a plurality of battery modules that provide backup power, a power circuit coupled to the input, coupled to the plurality of battery modules and coupled to the output to provide power derived from at least one of the input power and the backup power to the output, a controller, a return line coupled to the controller and coupled to each of the battery modules, and a first sense line coupled to the controller and coupled to the plurality of battery modules. The controller and each of the battery modules are configured and arranged such that at least one characteristic of the battery modules is determined by the controller based on signals detected by the controller on the first sense line.