Abstract:
A cooling/heating and power generating device utilizes waste heat from an automobile to produce an auxiliary energy source for driving various accessories such as a cooling/heating apparatus, an electric generator, a super charger and the like. Waste heat is dissipated from the engine by waste gases in an exhaust tube and by a cooling fluid circulating between the engine and a radiator. The inventive cooling/heating and power generating device comprises a heat absorber disposed between the engine and the radiator, a heater mounted on the exhaust tube, and an expansion turbine. A cooling medium is heated in the heat absorber by the cooling fluid of the engine, and in the heater by the waste gases in the exhaust tube. The heated cooling medium drives the expansion turbine thus providing a source of power auxiliary to the engine for driving an electric generator, a super charger, etc. After driving the expansion turbine, the cooling medium is condensed and pumped back to the heat absorber. The cooling medium can also be circulated into a cooling/heating apparatus for cooling or heating the passenger compartment.
Abstract:
A suction type turbo-supercharger (6) is driven by highly negative pressure suction air produced by a negative pressure generator (4) which accelerates the exhaust gas stream of an internal combustion engine (1), external air being drawn by the negative pressure into the suction turbine (61) of the turbo-supercharger (6) to rotate the supercharging turbine (62) coaxial and coupled with the suction turbine (61) to thereby supercharge the air fed into the combustion chamber of the engine. The air stream produced by the negative pressure drives the turbo-supercharger and may also be used to cool the engine, in which case the turbo-supercharger is driven by the air stream after cooling the engine.
Abstract:
Method and apparatus for providing auxiliary air to an internal combustion engine receiving compressed charge air from an exhaust gas driven compressor in accordance with the charge air requirements of the engine.
Abstract:
There is provided a compact turbine-compressor assembly 25. The turbine-compressor assembly 25 includes a turbine wheel 39 with one or more turbine blades 41 and a compressor wheel 47 that includes one or more compressor blades 49. The compressor wheel 47 is concentric with the turbine wheel 39. Furthermore, the compressor wheel 47 and the turbine wheel 39 are not located at opposite ends of a common axle with a medial portion of the axle distancing them apart, as is the case with prior art turbine-compressor assemblies that are known. In contrast, the turbine wheel 39 and the compressor wheel 47 are located adjacent to each other and in one embodiment they axially overlap each other so that one nests within the other to thereby provide a compact arrangement. The turbine-compressor assembly 25 includes a first fluid path 67 which is configured to convey fluid, which will typically be air, through the turbine blades 41. The turbine-compressor assembly 25 also includes a second fluid path 77 which is configured to convey fluid, which will typically be air, through the compressor blades. The turbine-compressor assembly 25 is arranged so that the first fluid path 67 is distinct from the second fluid path 77 and vice-versa.
Abstract:
A bottoming cycle power system includes a turbo-expander operable to rotate a turbo-crankshaft as a flow of exhaust gas from a combustion process passes through the turbo-expander. A turbo-compressor is operable to compress the flow of exhaust gas after the exhaust gas passes through the turbo-expander. An open cycle absorption chiller system includes an absorber section operable to receive the flow of exhaust gas from the turbo-expander and to mix the flow of exhaust gas with a first refrigerant solution within the absorber section. The first refrigerant solution is operable to absorb water from the exhaust gas as the exhaust gas passes through the first refrigerant solution. The absorber section is operable to route the flow of exhaust gas to the turbo-compressor after the flow of exhaust gas has passed through the first refrigerant solution.
Abstract:
There is provided a compact turbine-compressor assembly 25. The turbine-compressor assembly 25 includes a turbine wheel 39 with one or more turbine blades 41 and a compressor wheel 47 that includes one or more compressor blades 49. The compressor wheel 47 is concentric with the turbine wheel 39. Furthermore, the compressor wheel 47 and the turbine wheel 39 are not located at opposite ends of a common axle with a medial portion of the axle distancing them apart, as is the case with prior art turbine-compressor assemblies that are known. In contrast, the turbine wheel 39 and the compressor wheel 47 are located adjacent to each other and in one embodiment they axially overlap each other so that one nests within the other to thereby provide a compact arrangement. The turbine-compressor assembly 25 includes a first fluid path 67 which is configured to convey fluid, which will typically be air, through the turbine blades 41. The turbine-compressor assembly 25 also includes a second fluid path 77 which is configured to convey fluid, which will typically be air, through the compressor blades. The turbine-compressor assembly 25 is arranged so that the first fluid path 67 is distinct from the second fluid path 77 and vice-versa.
Abstract:
The present invention relates to a kinetic turbopump assembly for a closed loop, in particular of Rankine cycle type, associated with an internal-combustion engine (12) with a drive shaft (26), notably for a motor vehicle, wherein one (10) of the faces of said engine carries accessories (14, 18, 22) of this engine, and at least one winding roller (30, 30′, 30″) for a rotary motion transmission belt (32) connecting at least said accessories to drive shaft (26). According to the invention, the assembly comprises a rotary motion transmission path (T) between shaft (38) of the turbopump and said winding roller.
Abstract:
An integrated turbo-compressor includes a compressor with a compressor outlet, a turbine with a turbine inlet, the turbine operatively connected to the compressor by an interconnect shaft, and a compounding drive. The compounding drive is connected to the turbine and has a variable gear ratio and an output member, the variable gear ratio coupling the turbine to the output member to compound output of an internal combustion engine using energy recovered from an exhaust flow received from the internal combustion engine and in excess of energy required to compress combustion air provided to the internal combustion engine. Internal combustion engines, aircraft, and methods of compounding output of internal combustion engines are also described.