Abstract:
The present disclosure relates to cogeneration of power and one or more chemical entities through operation of a power production cycle and treatment of a stream comprising carbon monoxide and hydrogen. A cogeneration process can include carrying out a power production cycle, providing a heated stream comprising carbon monoxide and hydrogen, cooling the heated stream comprising carbon monoxide and hydrogen against at least one stream in the power production cycle so as to provide heating to the power production cycle, and carrying out at least one purification step so as to provide a purified stream comprising predominately hydrogen. A system for cogeneration of power and one or more chemical products can include a power production unit, a syngas production unit, one or more heat exchange elements configured for exchanging heat from a syngas stream from the syngas production unit to a stream from the power production unit, and at least one purifier element configured to separate the syngas stream into a first stream comprising predominately hydrogen and a second stream.
Abstract:
The present disclosure relates to cogeneration of power and one or more chemical entities through operation of a power production cycle and treatment of a stream comprising carbon monoxide and hydrogen. A cogeneration process can include carrying out a power production cycle, providing a heated stream comprising carbon monoxide and hydrogen, cooling the heated stream comprising carbon monoxide and hydrogen against at least one stream in the power production cycle so as to provide heating to the power production cycle, and carrying out at least one purification step so as to provide a purified stream comprising predominately hydrogen. A system for cogeneration of power and one or more chemical products can include a power production unit, a syngas production unit, one or more heat exchange elements configured for exchanging heat from a syngas stream from the syngas production unit to a stream from the power production unit, and at least one purifier element configured to separate the syngas stream into a first stream comprising predominately hydrogen and a second stream.
Abstract:
Configurations and related processing schemes of specific direct or indirect inter-plants integration for energy consumption reduction synthesized for grassroots medium grade crude oil semi-conversion refineries to increase energy efficiency from specific portions of low grade waste heat sources are described. Configurations and related processing schemes of specific direct or indirect inter-plants integration for energy consumption reduction for integrated medium grade crude oil semi-conversion refineries and aromatics complex for increasing energy efficiency from specific portions of low grade waste sources are also described.
Abstract:
Configurations and related processing schemes of direct or indirect inter-plants (or both) heating systems synthesized for grassroots medium grade crude oil semi-conversion refineries to increase energy efficiency from specific portions of low grade waste heat sources are described. Configurations and related processing schemes of direct or indirect inter-plants (or both) heating systems synthesized for integrated medium grade crude oil semi-conversion refineries and aromatics complex for increasing energy efficiency from specific portions of low grade waste sources are also described.
Abstract:
This invention relates to a method and apparatus for recycling plastics, electronics, munitions or propellants. In particular, the method comprises reacting a feed stock with a molten aluminum or aluminum alloy bath. The apparatus includes a reaction vessel for carrying out the reaction, as well as other equipment necessary for capturing and removing the reaction products. Further, the process can be used to cogenerate electricity using the excess heat generated by the process.
Abstract:
A power generation system includes a heating fluid circuit thermally coupled to multiple heat sources from at least an integrated hydrocracking plant and diesel hydro-treating plant of a petrochemical refining system. A first subset of the heat sources includes diesel hydro-treating plant heat exchangers coupled to streams in the diesel hydro-treating plant. A second subset of the heat sources includes hydrocracking plant heat exchangers coupled to streams in the hydrocracking plant. The heat exchangers are connected to a power generation system that includes an organic Rankine cycle (ORC) including a working fluid that is thermally coupled to the heating fluid circuit to heat the working fluid, an expander configured to generate electrical power from the heated first working fluid, and a control system configured to activate a set of control valves to selectively thermally couple the heating fluid circuit to at least a portion of the heat sources.
Abstract:
Optimizing power generation from waste heat in large industrial facilities such as petroleum refineries by utilizing a subset of all available hot source streams selected based, in part, on considerations for example, capital cost, ease of operation, economics of scale power generation, a number of ORC machines to be operated, operating conditions of each ORC machine, combinations of them, or other considerations are described. Subsets of hot sources that are optimized to provide waste heat to one or more ORC machines for power generation are also described. Further, recognizing that the utilization of waste heat from all available hot sources in a mega-site such as a petroleum refinery and aromatics complex is not necessarily or not always the best option, hot source units in petroleum refineries from which waste heat can be consolidated to power the one or more ORC machines are identified.
Abstract:
Apparatus, systems and methods are provided for the improved use of waste heat recovery systems which utilize the organic Rankine cycle (ORC) to generate mechanical and/or electric power from heat sources generating power from biofuel such as biogas produced during the anaerobic digestion process. Waste heat energy obtained from heat source(s) is provided to one or more ORC system(s) which may be operatively coupled to electric generator(s). A heat coupling subsystem provides the requisite condensation of ORC working fluid by transferring heat from ORC working fluid to another process or system, such as anaerobic digester tank(s), to provide heat energy that enhances the production of fuel for the prime mover(s) without requiring the consumption of additional energy for that purpose.
Abstract:
Configurations and related processing schemes of inter-plants and hybrid, intra- and inter-plants' direct or indirect heating systems synthesized for grassroots medium grade crude oil semi-conversion refineries to increase energy efficiency from specific portions of low grade waste heat sources are described. Configurations and related processing schemes of inter-plants and hybrid, intra- and inter-plants' direct or indirect heating systems synthesized for integrated medium grade crude oil semi-conversion refineries and aromatics complex for increasing energy efficiency from specific portions of low grade waste sources are also described.
Abstract:
A boiler system is provided comprising: a furnace adapted to receive a fuel to be burned to generate hot working gases; a fuel supply structure associated with the furnace for supplying fuel to the furnace; a superheater section associated with the furnace and positioned to receive energy in the form of heat from the hot working gases; and a controller. The superheater section may comprise a platen including a tube structure with an end portion and a temperature sensor for measuring the temperature of the tube structure end portion and generating a signal indicative of the temperature of the tube structure end portion. The controller may be coupled to the temperature sensor for receiving and monitoring the signal from the sensor.