Abstract:
Disclosed are a method and an apparatus for image encoding/decoding that support a plurality of layers. The method for image decoding that supports a plurality of layers includes decoding information of a first layer which a picture of a second layer including a current decoding target block refers to; mapping the information of the first layer to a picture size of the second layer, configuring a reference picture list for the picture of the second layer by adding the mapped information of the first layer and generating prediction samples of the current decoding target block by predicting the current decoding target block of the second layer based on the reference picture list, and the information of the first layer includes at least one of a sample value and motion information of the first layer picture.
Abstract:
Provided are a method and apparatus for encoding and decoding images based on constrained offset compensation and a loop filter. The image decoding apparatus: receives, from an encoder, a first indicator indicating whether a sequence, a picture, a frame, a slice, a coding unit (CU), a prediction unit (PU), and/or a transform unit (TU) supports constrained offset compensation; receives, from the encoder, a second indicator indicating whether constrained sample adaptive offset (SAO) compensation or an adaptive loop filter (ALF) is applied; receives a parameter from the encoder; and applies the SAO compensation or the ALF to pixels of a restored image on the basis of the second indicator and the parameter.
Abstract:
According to the present invention, an image decoding method for supporting a plurality of layers includes the steps of: receiving and parsing layer-dependent information for reference layers that can be referenced by a current layer in an entire bitstream; when interlayer prediction is used in decoding a current picture in the current layer, receiving and parsing layer information for a reference layer referenced by the current picture among the reference layers; and decoding the current picture on the basis of the layer information.
Abstract:
A method for decoding an image according to the present invention comprises the steps of: restoring a residual block by performing inverse quantization and inverse transformation for the entropy-decoded residual block; generating a prediction block by performing intra prediction for a current block; and restoring an image by adding the restored residual block to the prediction block, wherein the step of generating the prediction block further comprises a step for generating a final prediction value of a pixel to be predicted, on the basis of a first prediction value of the pixel to be predicted, which is included in the current block, and of a final correction value that is calculated by performing an arithmetic right shift by a binary digit 1 for a two's complement integer representation with respect to an initial correction value of the pixel to be predicted. Thus, the operational complexity during image encoding/decoding can be reduced.
Abstract:
A video decoding method according to an embodiment of the present invention may include determining a type of a filter to be applied to a first-layer picture which a second-layer picture as a decoding target refers to; determining a filtering target of the first-layer picture to which the filter is applied; filtering the filtering target based on the type of the filter; and adding the filtered first-layer picture to a second-layer reference picture list. Accordingly, the video decoding method and an apparatus using the same may reduce a prediction error in an upper layer and enhance encoding efficiency.
Abstract:
A method for decoding an image according to the present invention comprises the steps of: restoring a residual block by performing inverse quantization and inverse transformation for the entropy-decoded residual block; generating a prediction block by performing intra prediction for a current block; and restoring an image by adding the restored residual block to the prediction block, wherein the step of generating the prediction block further comprises a step for generating a final prediction value of a pixel to be predicted, on the basis of a first prediction value of the pixel to be predicted, which is included in the current block, and of a final correction value that is calculated by performing an arithmetic right shift by a binary digit 1 for a two's complement integer representation with respect to an initial correction value of the pixel to be predicted. Thus, the operational complexity during image encoding/decoding can be reduced.
Abstract:
Provided is a semiconductor rectifier device. The semiconductor rectifier device may include a substrate doped with a first conductive type, a second electrode provided on a bottom surface of the substrate, an active region and a field region defined on the substrate, a gate provided in the active region, a gate insulating film provided between the gate and the substrate, body regions provided on the substrate adjacent to first and second sides of the gate, facing each other, and doped with a second conductive type dopant different from the first conductive type, and a second conductive type plug region formed on the substrate adjacent to third and fourth sides of the gate, connecting the first and second sides.
Abstract:
Provided are a semiconductor device and a method of fabricating the same. The method includes: forming a trench in a semiconductor substrate of a first conductive type; forming a trench dopant containing layer including a dopant of a second conductive type on a sidewall and a bottom surface of the trench; forming a doping region by diffusing the dopant in the trench dopant containing layer into the semiconductor substrate; and removing the trench dopant containing layer.