Abstract:
Disclosed is an example for determining a projectile trajectory with at least two sensors. In one example, the projectile trajectory is estimated using a first sensor having a first angular range. Further, the projectile trajector is estimated using a second sensor having a second angular range. The first sensor and the second sensor are disposed on a platform at different spatial locations. Furthermore, a discrepancy in the projectile trajectory is determined when the projectile moves from the first angular range to the second angular range. The discrepancy is created due to the different spatial locations of the first sensor and the second sensor. An actual projectile trajectory is determined by compensating for the discrepancy in the projectile trajectory using the estimated discrepancy.
Abstract:
According to an embodiment, an improved flying adder circuit, comprises a fine clock, a coarse pulse clock, a rising edge triggered output connected to both the fine clock and the coarse pulse clock, a pulse clock connected to the rising edge triggered output, an adder, a 12-bit register situated to receive a signal from the adder and the pulse clock, and a single bit register situated to receive a signal from the pulse clock.
Abstract:
An athermal locking mechanism apparatus for large optic mounts is disclosed. The apparatus comprises at least one locking nut, at least one flexurized spring collet attached to a rigid base structure, a pivot shaft engaged with an optical yolk on a rotational axis of symmetry and a plurality of threads that joins the locking nuts with the flexurized spring collet The threads provide an increased level of a radial clamping force onto the pivot shaft. The interference generated between the locking nut and the spring collet causes all flexures to squeeze down onto the shaft, applying a purely symmetric radial force during the locking process. This eliminates any induced rotational torque and prevents the optical element from moving during the locking process after being properly aligned.
Abstract:
A method for polishing photonic chips is described. A gauge is placed in a photonic chip adjacent to an edge to be polished. The gauge includes a set of bars of various lengths. The bar lengths can be progressively ordered from shortest to longest or vice versa. The photonic chip is then secured in a chip polishing jig to get ready for polishing. When the photonic chip is being polished, an operator can visually inspect the gauge by looking at the polishing edge to estimate a polishing depth in order to determine a stopping point for polishing. Once the stopping point has been reached, the polishing of the photonic chip can be stopped.
Abstract:
A system for providing situational awareness outside a temporary incident area network includes a prioritized connection module for connecting a mesh network at the incident area to one of a plurality of available communications channels, with the selection based not only on the availability of a communications channel but also on the associated expense, speed, reliability or bandwidth, so that high bandwidth traffic such as video and pictures can be reliably sent from the incident area to a location outside of the incident area. In one embodiment switching to a satellite phone network bypasses problems with terrestrial networks such as cell phone networks and landlines which may be down.
Abstract:
A system and method for projecting target tracks produced by a remote tracker onto a surface of the Earth to obtain projected tracks is provided. Projection bias in a projected track from the remote tracker projected onto a planar map is removed by computing a discrete Frechet distance from a polygonal curve associated with a track derived from the remote tracker to a corresponding polygonal curve on the planar map. A correspondence between the projected track and a track on the planar map is automatically established. A projection bias is removed based on the correspondence.
Abstract:
A shearography system and method provide advances allowing for rapid processing to produce shearograms which provide surface motion information which may be helpful in multiple fields. For instance, amongst virtually endless possibilities, the system and method may allow for detection of underground structures or ordnance and or be used in the medical field to provide non-contact sensing of a person's internal structures or movements.
Abstract:
A system and method for dynamically planning a network is presented. One method may begin by determining network parameters for connecting nodes to a network and decision variables associated with radios and/or nodes in the network. Constraints may be established to narrow possible values of the network parameters and/or the decision variables. The constraints may be based on one or more of: values associated with connecting a radio to a node in the network, values associated with connecting two nodes in the network together over a communication link, whether a node can connect to a GIG node and a flow balance in the GIG node. To find possible links in the network that are optimal, the method may minimize an equation based on the network parameters, constraints and decision variables to determine optimal communication links between pairs of nodes in the network, pairs of nodes and radios and/or pairs of radios.
Abstract:
An amplifier for amplifying signals is presented. A cascode power amplifies includes two or more adjacent cascode amplifiers and at least one remote cascode amplifier. The adjacent cascode amplifiers are lined up adjacent each other with inputs of the adjacent cascode amplifiers connected to a common input line and outputs of the of adjacent cascode amplifiers connected to a common output line. The adjacent cascode amplifiers generally operate in parallel. The remote cascode amplifier is spaced apart from the adjacent cascade amplifiers. An input transmission line connects an input of the remote cascode amplifier to the common input line. An output transmission line connects an output of the remote cascode amplifier to the common output line. Amplified outputs of the adjacent cascode amplifiers and amplified outputs of the remote cascode amplifier are power combined and summed into a coherent amplified output signal that is output on the output transmission line.