Abstract:
An oligomer and a lithium battery are provided. The oligomer is obtained by reacting a maleimide, a barbituric acid, and a promoter in a solvent. The promoter has the structure represented by formula 1: X—(R)3 formula 1, wherein X is N or P; R is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. The lithium battery includes an anode, a cathode, a separator, an electrolyte solution, and a package structure, wherein the cathode includes the oligomer.
Abstract:
An apparatus for cutting a substrate is disclosed. The apparatus includes a main body containing a reactive solution and the substrate; and a catalytic cutting element disposed inside the main body and contacting one of at least two adjacent cutting peripheries of the substrate to conduct a chemical reaction to cut the substrate.
Abstract:
A radial artery blood pressure waveform measuring device includes a stress sensor, a stress concentrating elastic structure, and a stress guiding elastic member. The stress sensor is in contact with a skin surface of a wrist corresponding to a position of a radial artery. The stress concentrating elastic structure is disposed on the stress sensor. The stress guiding elastic member has a top surface, a bottom surface, and at least one side surface. The bottom surface is disposed on the stress concentrating elastic structure, and an area of the bottom surface is greater than an area of a horizontal section of the stress concentrating elastic structure.
Abstract:
A method for three-dimensional data acquisition, adapted to acquire three-dimensional data of an object, includes the following steps. A laser light is projected onto a plurality of regions on the surface of the object so as to form a plurality of features within each of the regions. For each of the regions, the object and the features are captured from a first direction and a second direction simultaneously so as to generate a first object image corresponding to the first direction and a second object image corresponding to the second direction. For each of the regions, the first object image and the second object image are processed so as to obtain the two-dimensional coordinates of the features therein. The three-dimensional data of the object is obtained according to the two-dimensional data of the features in the first object image and the second object image corresponding to each of the regions.
Abstract:
A contactless detection method with noise elimination is applied to measuring the information of physiological and physical activities. It includes following steps: sensing a human body to generate an image by an image sensor; capturing a physiological signal from the image; tracing a feature point of the human body in the image to generate a physical activity signal; and calculating information of physical activities covering step count, speed and calories according to the physical activity signal and the physiological signal. In particular, the contactless detection method treats the physiological signal cooperated with the physical activity signal to separate a noise from the physiological signal, so as to generate an ideal physiological signal. Therefore, the physiological information is calculated more accurately according to the ideal physiological signal.
Abstract:
An electrospun nanofibrous membrane is sheet like and is formed by multiple glucose oxidase/potassium hexacyanoferrate(III) modified electrospun nanofibers. The glucose oxidase/potassium hexacyanoferrate(III) modified electrospun nanofibers are PVA electrospun nanofibers containing glucose oxidase and potassium hexacyanoferrate(III) homogeneously dispersed therein. The glucose oxidase/potassium hexacyanoferrate(III) modified electrospun nanofibers are PVA electrospun nanofibers and are cross-linked by glutaraldehyde vapor with ultrasonic energy assistance. Graphene modified PVA/GOx electrospun membranes were prepared to examine the immobilization mechanism between graphene and GOx. The electrochemical measurement results show that the sensitivities increased with increasing graphene concentrations up to 20 ppm. The highest sensitivity recorded 38.7 μA/mM was for a PVA/GOx membrane with 20 ppm graphene representing a 109% increase over a membrane made without graphene.
Abstract:
A method for producing a polymer nanofoam includes: immersing a polymer material in carbon dioxide at a pressure greater than 5 MPa and a temperature of −30° C. to 40° C. to obtain a carbon dioxide-saturated polymer material, wherein the melt index of the polymer material measured at 230 ° C. and 3.8 kg is between 0.1 g/10 min and 8.0 g/10 min. Thereafter, the carbon dioxide-saturated polymer material is depressurized to atmospheric pressure, and then the carbon dioxide-saturated polymer material is heated to form the polymer nanofoam.
Abstract:
A mediator-type photocell system is provided. The mediator-type photocell system includes a galvanic cell having a galvanic cell anode and a galvanic cell cathode; and a light capturing portion, including a light capturing cathode corresponding to the galvanic cell anode; and a light capturing anode electrically connected to the light capturing cathode via a conductive element, and corresponding to the galvanic cell cathode, wherein the galvanic cell cathode and the light capturing anode have a first mediator therebetween, the galvanic cell anode and the light capturing cathode have a second mediator therebetween, an oxide is generated to be provided to the galvanic cell cathode when the first mediator is illuminated, and a reducing substance is generated to be provided to the galvanic cell anode when the second mediator is illuminated.
Abstract:
A method of processing a substrate is disclosed. The method includes the following steps: providing a substrate body having a surface; placing a die on the surface, wherein the die acts as a catalyst; immersing the substrate body and the die in a reaction solution; and processing the substrate body via a chemical reaction occurring on the surface through the reaction solution and the catalyst.
Abstract:
An operational transconductance amplifier includes a fully-differential amplifying circuit, a bias driving circuit, and a common mode feedback circuit. The fully-differential amplifying circuit is configured for receiving a differential input voltage and providing a differential output voltage. The fully-differential amplifying circuit includes a plurality of diffusor-differential-pair circuits. The bias driving circuit is configured for providing at least one first bias current to drive the fully-differential amplifying circuit and adjust the transconductance of the transconductance amplifier. The common mode feedback circuit is configured for stabilizing the differential output voltage. An operational transconductance amplifier-capacitor (OTA-C) filter and a high order filter are disclosed herein as well.