Abstract:
A method of crimping a stent on a balloon of a catheter assembly is provided. A polymeric stent is disposed over a balloon in an inflated configuration. The stent is crimped over the inflated balloon to a reduced crimped configuration so that the stent is secured onto the balloon. The balloon wall membrane is wedged or pinched between the strut elements of the stent for increasing the retention of the stent on the balloon.
Abstract:
A composition comprising a structural component comprising linear acrylic homopolymers or linear acrylic copolymers and a biobeneficial component comprising copolymers having an acrylate moiety and a biobeneficial moiety is disclosed. A medical article comprising the composition in the coating thereof and a method of fabricating the medical article are also disclosed.
Abstract:
A biobeneficial coating composition for coating an implantable device, such as a drug eluting stent, a method of coating the device with the composition, an implantable device coated with the composition, and a method of treating a disorder are provided.
Abstract:
A stent coating apparatus for coating a stent includes a brush assembly, a stent support, and a dispensing mechanism. The brush assembly includes a plurality of fibers, and the stent support carries a stent at a position in which the stent is in contact with the fibers. The dispensing mechanism dispenses a coating composition to the plurality of fibers.
Abstract:
Coatings for an implantable medical device and a method of fabricating thereof are disclosed, the coatings include block-polymers comprising at least one poly(hydroxyacid) or poly(hydroxy-alkanoate) block, at least one block of a biologically compatible polymer and at least one type of linking moiety.
Abstract:
Coatings for an implantable medical device and a method of fabricating thereof are disclosed, the coatings including block-polymers comprising at least one poly(hydroxyacid) or poly(hydroxy-alkanoate) block, at least one block of a biologically compatible polymer and at least one type of linking moiety.
Abstract:
A membrane that reduces the rate at which a therapeutic substance is released from an implantable medical device, such as a stent, is disclosed.
Abstract:
An intravascular catheter system, such as a dilatation catheter system for angioplasty procedures, which provides for the replacement of the catheter or the guidewire during the procedure. The intravascular catheter has a guidewire-receiving inner lumen extending along its length. A first guidewire port is provided in the catheter body at or near the proximal end of the catheter. A second guidewire port is provided in the catheter body at a location spaced distally from the first guidewire port and proximally from a diagnostic or therapeutic tool, such as a dilatation balloon, on a distal portion of the catheter. A third guidewire port is provided in the distal end of the catheter. The guidewire ports are in communication with the guidewire-receiving inner lumen.
Abstract:
The invention is directed to a guidewire having a distal section with multiple distally tapered core segments with at least two contiguous distally tapering core segments in which the most distal tapered core segment preferably has a greater degree of taper than the proximally contiguous tapered core segment. The invention is also directed to an elongated intracorporeal device, preferably a guidewire or section thereof, that has a core member or the like with a plurality of contiguous tapered segments having taper angles that are configured to produce a linear change in stiffness over a longitudinal section of the device. The device may also have a core section with a continuously changing taper angle to produce a curvilinear profile that preferably is configured to produce a linear change in stiffness of the core over a longitudinal section of the device.