摘要:
An object is to provide a method for manufacturing an SOI substrate including a single crystal silicon film whose plane orientation is (100) and a single crystal silicon film whose plane orientation is (110) with high yield. A first single crystal silicon substrate whose plane orientation is (100) is doped with first ions to form a first embrittlement layer. A second single crystal silicon substrate whose plane orientation is (110) is doped with second ions to selectively form a second embrittlement layer. Only part of the first single crystal silicon substrate is separated along the first embrittlement layer by first heat treatment, thereby forming a first single crystal silicon film. A region of the second single crystal silicon substrate, in which the second embrittlement layer is not formed, is removed. Part of the second single crystal silicon substrate is separated along the second embrittlement layer by second heat treatment, thereby forming a second single crystal silicon film.
摘要:
A semiconductor device having high electrical characteristics is manufactured at low cost and with high throughput. A semiconductor film is crystallized or activated by being irradiated with a laser beam emitted from one fiber laser. Alternatively, laser beams are emitted from a plurality of fiber lasers and coupled by a coupler to be one laser beam, and then a semiconductor film is irradiated with the coupled laser beam so as to be crystallized or activated.
摘要:
To prevent, in the case of irradiating a single crystal semiconductor layer with a laser beam, an impurity element from being taken into the single crystal semiconductor layer at the time of laser irradiation. In a manufacturing method of an SOI substrate, a single crystal semiconductor substrate and a base substrate are prepared; an embrittlement region is formed in a region at a predetermined depth from a surface of the single crystal semiconductor substrate by irradiating the single crystal semiconductor substrate with accelerated ions; the single crystal semiconductor substrate and a base substrate are bonded to each other with an insulating layer interposed therebetween; a single crystal semiconductor layer is formed over the base substrate with the insulating layer interposed therebetween by heating the single crystal semiconductor substrate to cause separation using the embrittlement region as a boundary; an oxide film formed on the single crystal semiconductor layer is removed; and at least a surface of the single crystal semiconductor layer is melted by irradiating the surface of the single crystal semiconductor layer with a laser beam after the removal of the oxide film. The number of times the single crystal semiconductor layer is melted by the irradiation with the laser beam is one.
摘要:
To increase adhesion between a single crystal semiconductor layer and a base substrate and to reduce bonding defects therebetween. To perform radical treatment on a surface of a semiconductor substrate to form a first insulating film on the semiconductor substrate; irradiate the semiconductor substrate with accelerated ions through the first insulating film to form an embrittlement region in the semiconductor substrate; form a second insulating film on the first insulating film; perform heat treatment after bonding a surface of the second insulating film and a surface of the base substrate to perform separation along the embrittlement region so that a semiconductor layer is formed over the base substrate with the first and second insulating films interposed therebetween; etch the semiconductor layer; and irradiate the semiconductor layer on which the etching is performed with a laser beam.
摘要:
An SOI substrate is manufactured by forming an embrittled layer in a bond substrate by increasing the dose of hydrogen ions in the formation of the embrittled layer to a value more than the dose of hydrogen ions of the lower limit for separation of the bond substrate, separating the bond substrate attached to the base substrate, forming an SOI substrate in which a single crystal semiconductor film is formed over the base substrate, and irradiating a surface of the single crystal semiconductor film with laser light.
摘要:
To provide a semiconductor substrate in which a semiconductor element having favorable crystallinity and high performance can be formed. A single crystal semiconductor substrate having an embrittlement layer and a base substrate are bonded with an insulating layer interposed therebetween; the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment; a single crystal semiconductor layer is fixed to the base substrate; the single crystal semiconductor layer is irradiated with a laser beam; the single crystal semiconductor layer is in a partially melted state to be recrystallized; and crystal defects are repaired. In addition, the energy density of a laser beam with which the best crystallinity of the single crystal semiconductor layer is obtained is detected by a microwave photoconductivity decay method.
摘要:
A photoelectric conversion device includes one or more unit cells between a first electrode and a second electrode, in which a semiconductor junction is formed by sequentially stacking: a first impurity semiconductor layer of one conductivity type; an intrinsic non-single-crystal semiconductor layer including an NH group or an NH2 group; and a second impurity semiconductor layer of opposite conductivity type to the first impurity semiconductor layer. In the non-single-crystal semiconductor layer of a unit cell on a light incident side, the nitrogen concentration measured by secondary ion mass spectrometry is 5×1018/cm3 or more and 5×1020/cm3 or less and oxygen and carbon concentrations measured by secondary ion mass spectrometry are less than 5×1018/cm3.
摘要翻译:光电转换装置包括在第一电极和第二电极之间的一个或多个单位电池,其中通过依次层叠形成半导体结:一种导电类型的第一杂质半导体层; 包含NH基或NH 2基的本征非单晶半导体层; 以及与第一杂质半导体层相反的导电类型的第二杂质半导体层。 在光入射侧的单电池的非单晶半导体层中,通过二次离子质谱法测定的氮浓度为5×1018 / cm 3以上且5×10 20 / cm 3以下,并且测量了氧和碳浓度 通过二次离子质谱分析,小于5×1018 / cm3。
摘要:
It is object to provide a manufacturing method of an SOI substrate provided with a single-crystal semiconductor layer, even in the case where a substrate having a low allowable temperature limit, such as a glass substrate, is used and to manufacture a high-performance semiconductor device using such an SOI substrate. Light irradiation is performed on a semiconductor layer which is separated from a semiconductor substrate and bonded to a support substrate having an insulating surface, using light having a wavelength of 365 nm or more and 700 nm or less, and a film thickness d (nm) of the semiconductor layer which is irradiated with the light is made to satisfy d=λ/2n×m±α (nm), when a light wavelength is λ (nm), a refractive index of the semiconductor layer is n, m is a natural number greater than or equal to 1 (m=1, 2, 3, 4, . . . ), and 0≦α≦10 is satisfied.
摘要:
A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
摘要:
Methods for manufacturing a semiconductor substrate and a semiconductor device by which a high-performance semiconductor element can be formed are provided. A single crystal semiconductor substrate including an embrittlement layer and a base substrate are bonded to each other with an insulating layer interposed therebetween, and the single crystal semiconductor substrate is separated along the embrittlement layer by heat treatment to fix a single crystal semiconductor layer over the base substrate. Next, a plurality of regions of a monitor substrate are irradiated with laser light under conditions of different energy densities, and carbon concentration distribution and hydrogen concentration distribution in a depth direction of each region of the single crystal semiconductor layer which has been irradiated with the laser light is measured. Optimal irradiation intensity of laser light is irradiation intensity with which a local maximum of the carbon concentration and a shoulder peak of the hydrogen concentration are observed. A single crystal semiconductor layer is irradiated with optimal laser light at energy density detected by using the monitor substrate, whereby a semiconductor substrate is manufactured.