Abstract:
A semiconductor structure includes a semiconductor substrate; a first high-voltage well (HVW) region of a first conductivity type overlying the semiconductor substrate; a second well region of a second conductivity type opposite the first conductivity type overlying the semiconductor substrate and laterally adjoining the first well region; a gate dielectric extending from over the first well region to over the second well region; a drain region in the second well region; a source region on an opposite side of the gate dielectric than the drain region; and a gate electrode on the gate dielectric. The gate electrode includes a first portion directly over the second well region, and a second portion directly over the first well region. The first portion has a first impurity concentration lower than a second impurity concentration of the second portion.
Abstract:
A semiconductor device includes a semiconductor substrate, a source region and a drain region formed in the substrate, a gate structure formed on the substrate disposed between the source and drain regions, and a first isolation structure formed in the substrate between the gate structure and the drain region, the first isolation structure including projections that are located proximate to an edge of the drain region. Each projection includes a width measured in a first direction along the edge of the drain region and a length measured in a second direction perpendicular to the first direction, and adjacent projections are spaced a distance from each other.
Abstract:
A method for etching a dielectric material in a semiconductor device is disclosed. After providing a conductive region, a dielectric layer is formed over the conductive region. A dielectric antireflective coating (DARC) layer is further formed on the dielectric layer. Then, a moisture-removal step is performed that removes moisture from the DARC layer and from an interface region between the dielectric and the DARC layer. A masking pattern is transferred into the DARC layer and the dielectric layer.
Abstract:
During the conventional manufacture of HBTs, implant damage occurs which leads to enhanced internal base diffusion. This problem has been overcome by making the base and base contact area from a single, uniformly doped layer of silicon-germanium. Instead of an ion implant step to selectively reduce the resistance of this layer away from the base, a layer of polysilicon is selectively deposited (using selective epi deposition) onto only that part. Additionally, the performance of the polysilicon emitter is enhanced by means a brief thermal anneal that drives a small amount of opposite doping type silicon into the SiGe base layer.
Abstract:
A method of forming an NMOS device with reduced device degradation, generated during a constant current stress, has been developed. The reduced device degradation is attributed to the use of a high temperature oxide (HTO), layer, used as an underlying component of composite insulator spacers, formed on the sides of the NMOS gate structures. After definition of an insulator capped polycide gate structure a thin, (140 to 160 Angstrom), HTO layer is deposited at a temperature between about 700 to 800° C., followed by the deposition of a silicon nitride layer. Definition of the composite insulator layer, comprised with the underlying, HTO, results in NMOS devices with reduced drain current and reduced transconductance values, when compared to counterparts fabricated with composite insulator spacers formed without the thin, HTO layer featured in this invention.