摘要:
Provided is a high voltage semiconductor device. The semiconductor device includes a doped well located in a substrate that is oppositely doped. The semiconductor device includes a dielectric structure located on the doped well. A portion of the doped well adjacent the dielectric structure has a higher doping concentration than a remaining portion of the doped well. The semiconductor device includes an elongate polysilicon structure located on the dielectric structure. The elongate polysilicon structure has a length L. The portion of the doped well adjacent the dielectric structure is electrically coupled to a segment of the elongate polysilicon structure that is located away from a midpoint of the elongate polysilicon structure by a predetermined distance that is measured along the elongate polysilicon structure. The predetermined distance is in a range from about 0*L to about 0.1*L.
摘要:
A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
摘要:
Provided is a high voltage semiconductor device. The high voltage semiconductor device includes a transistor having a gate, a source, and a drain. The source and the drain are formed in a doped substrate and are separated by a drift region of the substrate. The gate is formed over the drift region and between the source and the drain. The transistor is configured to handle high voltage conditions that are at least a few hundred volts. The high voltage semiconductor device includes a dielectric structure formed between the source and the drain of the transistor. The dielectric structure protrudes into and out of the substrate. Different parts of the dielectric structure have uneven thicknesses. The high voltage semiconductor device includes a resistor formed over the dielectric structure. The resistor has a plurality of winding segments that are substantially evenly spaced apart.
摘要:
A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
摘要:
Provided is a high voltage semiconductor device that includes a PIN diode structure formed in a substrate. The PIN diode includes an intrinsic region located between a first doped well and a second doped well. The first and second doped wells have opposite doping polarities and greater doping concentration levels than the intrinsic region. The semiconductor device includes an insulating structure formed over a portion of the first doped well. The semiconductor device includes an elongate resistor device formed over the insulating structure. The resistor device has first and second portions disposed at opposite ends of the resistor device, respectively. The semiconductor device includes an interconnect structure formed over the resistor device. The interconnect structure includes: a first contact that is electrically coupled to the first doped well and a second contact that is electrically coupled to a third portion of the resistor located between the first and second portions.
摘要:
A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.
摘要:
The present disclosure provides a semiconductor device that includes a substrate having a resistor element region and a transistor region, a floating substrate in the resistor element region of the substrate, an epitaxial layer disposed over the floating substrate, and an active region defined in the epitaxial layer, the active region surrounded by isolation structures. The device further includes a resistor block disposed over an isolation structure, and a dielectric layer disposed over the resistor block, the isolation structures, and the active region. A method of fabricating such semiconductor devices is also provided.
摘要:
A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS) and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. One portion of the second well surrounds the source and the other portion of the second well extends laterally from the first portion in the first well.
摘要:
A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.
摘要:
The present disclosure provides a semiconductor device. The semiconductor device includes: a drift region having a first doping polarity formed in a substrate; a doped extension region formed in the drift region and having a second doping polarity opposite the first doping polarity, the doped extension region including a laterally-extending component; a dielectric structure formed over the drift region, the dielectric structure being separated from the doped extension region by a portion of the drift region; a gate structure formed over a portion of the dielectric structure and a portion of the doped extension region; and a doped isolation region having the second doping polarity, the doped isolation region at least partially surrounding the drift region and the doped extension region.