Abstract:
A stiffener structure, a wiring substrate, and a frame having a major surface disposed in a stack can be part of a probe card assembly. The wiring substrate can be disposed between the frame and the stiffener structure, and probe substrates can be coupled to the frame by one or more non-adjustably fixed coupling mechanisms. Each of the probe substrates can have probes that are electrically connected through the probe card assembly to an electrical interface on the wiring substrate to a test controller. The non-adjustably fixed coupling mechanisms can be simultaneously stiff in a first direction perpendicular to the major surface and flexible in a second direction generally parallel to the major surface.
Abstract:
A stiffener assembly for use with testing devices is provided herein. In some embodiments, a stiffener for use with testing devices includes an inner member; an outer member disposed in a predominantly spaced apart relation to the inner member; and a plurality of alignment mechanisms for orienting the inner and outer members with respect to each other, wherein the alignment mechanisms transfer forces applied to a lower surface of the inner member to the outer member and provide the predominant conductive heat transfer passageway between the inner and outer members.
Abstract:
Rotating contact elements and methods of fabrication are provided herein. In one embodiment, a rotating contact element includes a tip having a first side configured to contact a device to be tested and an opposing second side; and a plurality of deformed members extending from the second side of the tip and arranged about a central axis thereof, wherein the tip rotates substantially about the central axis upon compression of the plurality of deformed members.
Abstract:
A method or an apparatus for aligning a plurality of structures can include applying a first force in a first plane to a first structure. The method can also include constraining in the first plane the first structure with respect to a second structure such that the first structure is in a position with respect to the second structure that aligns first features on the first structure with second features on the second structures. The second feature can be in a second plane that is generally parallel to the first plane. The first and second structures can be first and second electronic components, which can be components of a probe card assembly.
Abstract:
A stiffener structure, a wiring substrate, and a frame having a major surface disposed in a stack can be part of a probe card assembly. The wiring substrate can be disposed between the frame and the stiffener structure, and probe substrates can be coupled to the frame by one or more non-adjustably fixed coupling mechanisms. Each of the probe substrates can have probes that are electrically connected through the probe card assembly to an electrical interface on the wiring substrate to a test controller. The non-adjustably fixed coupling mechanisms can be simultaneously stiff in a first direction perpendicular to the major surface and flexible in a second direction generally parallel to the major surface.
Abstract:
A thermal adjustment apparatus for adjusting one or more thermally induced movements of an electro-mechanical assembly includes: a compensating element expanding at a first rate different from a second rate at which the electro-mechanical assembly expands for generating a counteracting force in response to changes in temperature; and a coupling mechanism coupling the compensating element to the electro-mechanical assembly, and being adjustable to control an amount of the counteracting force applied to the electro-mechanical assembly as temperature changes.
Abstract:
A probe card assembly can include a probe head assembly having probes for contacting an electronic device to be tested. The probe head assembly can be electrically connected to a wiring substrate and mechanically attached to a stiffener plate. The wiring substrate can provide electrical connections to a testing apparatus, and the stiffener plate can provide structure for attaching the probe card assembly to the testing apparatus. The stiffener plate can have a greater mechanical strength than the wiring substrate and can be less susceptible to thermally induced movement than the wiring substrate. The wiring substrate may be attached to the stiffener plate at a central location of the wiring substrate. Space may be provided at other locations where the wiring substrate is attached to the stiffener plate so that the wiring substrate can expand and contract with respect to the stiffener plate.
Abstract:
A stiffener assembly for use with testing devices is provided herein. In some embodiments, a stiffener for use with testing devices includes an inner member; an outer member disposed in a predominantly spaced apart relation to the inner member; and a plurality of alignment mechanisms for orienting the inner and outer members with respect to each other, wherein the alignment mechanisms transfer forces applied to a lower surface of the inner member to the outer member and provide the predominant conductive heat transfer passageway between the inner and outer members.
Abstract:
A stiffener assembly for use with testing devices is provided herein. In some embodiments, a stiffener for use with testing devices includes an inner member; an outer member disposed in a predominantly spaced apart relation to the inner member; and a plurality of alignment mechanisms for orienting the inner and outer members with respect to each other, wherein the alignment mechanisms transfer forces applied to a lower surface of the inner member to the outer member and provide the predominant conductive heat transfer passageway between the inner and outer members.
Abstract:
Methods and apparatus for testing semiconductor devices are provided herein. In some embodiments, an assembly for testing semiconductor devices can include a probe card assembly; and a thermal barrier disposed proximate an upper surface of the probe card assembly, the thermal barrier can restrict thermal transfer between tester side boundary conditions and portions of the probe card assembly disposed beneath the thermal barrier.