Abstract:
The present invention includes a body implantable lead having a multi-polar proximal connector, at least a first conductor coupled to at least one stimulating electrode, a sensor for sensing at least one physiologic parameter of the body, and a second and a third conductor coupled to the sensor. The sensor is hermetically sealed in a D-shaped housing. Sensor components are mounted onto a microelectronic substrate which is advantageously placed on an inner flat portion of the D-shaped housing. End caps having glass frit sealing rings are used to seal the ends of the shell. A hermetic seal is easily achieved by heating the glass frit such that the glass frit reflows between the end caps and the shell. Advantageously, the sensor terminals are sized to fit snugly within a narrow bore of the end cap which is then welded closed. The D-shaped sensor is placed on a carrier having at least two lumens. At least the first and second conductors pass through the lumens for connection with the stimulating electrode and the distal end of the sensor. Advantageously, the D-shaped housing reduces the area that needs to be hermetically sealed by more than half, and thus reduces the overall diameter of the lead. Advantageously, the conductors coupled to the sensor function independently from the stimulation conductors so that interference with basic operation of the pacemaker is prevented.
Abstract:
A cardiac defibrillation system and method includes an epicardial electrode for making electrical contact with the epicardium from a position within the pericardial space, an endocardial electrode for making electrical contact with the endocardium of the heart, and means for making electrical contact with the epicardial and endocardial electrodes. The endocardial electrode is inserted transvenously into the heart in conventional manner. The epicardial electrode is also inserted transvenously into the heart, through the heart wall, and into the pericardial space. No open chest surgery is required.
Abstract:
A pacemaker and physiological sensor for use therewith that allows the rate at which the pacemaker delivers electrical stimulation pulses to the heart, or the escape interval during which a natural heart event must occur before an electrical stimulation pulse is delivered, to be adjusted as needed in order to satisfy the body's physiological needs. The sensor measures the depolarization time interval between an atrial stimulation pulse, A, and the responsive atrial or ventricle depolarization, P or R respectively, as an indication of the physiological demands placed on the heart. The time interval between a ventricular stimulation pulse, V, and the responsive ventricular depolarization, R, may also be measured and used as an indication of physiological need, and hence as an alternative criteria for rate control. Atrial depolarization is sensed by detecting a P-wave, and ventricular depolarization is preferably sensed by detecting an R-wave. A method of measuring A-P, A-R, or V-R intervals is used to ascertain if these intervals are increasing or decreasing. If, over several heart cycles or beats, an increase or decrease in these measurements is detected, the pacing interval set by the pacemaker is adjusted in an appropriate direction in order to adjust the heart stimulation rate accordingly.
Abstract:
Systems and methods for positioning implanted devices in a patient are disclosed. A method in accordance with a particular embodiment includes, for each of a plurality of patients, receiving a target location from which to deliver a modulation signal to the patient's spinal cord. The method further includes implanting a signal delivery device within a vertebral foramen of each patient, and positioning an electrical contact carried by the signal delivery device to be within ±5 mm. of the target location, without the use of fluoroscopy. The method can still further include, for each of the plurality of patients, activating the electrical contact to modulate neural activity at the spinal cord. In further particular embodiments, RF signals, ultrasound, magnetic fields, and/or other techniques are used to locate the signal delivery device.
Abstract:
A method for treating a patient may include treating coronary artery disease in combination with angina pectoris and/or the control of angina pain by delivering chemical and/or electrical stimulation pulses to the cardiac and/or nervous tissue of the patient in a coordinated manner. A system for treating a patient suffering from coronary artery disease and angina may include a stimulator that generates at least one pulse in accordance with prescribed parameters, a catheter, a lead, and/or a sensor.
Abstract:
Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications. In particular embodiments, aspects of the foregoing modulation therapies may be implemented by systems and devices that have simplified functionalities.
Abstract:
Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
Abstract:
A programming system for selecting an electrode configuration for use in a medical electrical stimulator coupled to an electrode array. A programmer is configured for providing a set of electrode configurations for the electrode array, automatically testing a first portion of the set of electrode configurations in a first order, allowing the selection of one or more of the tested electrode configurations, determining whether a suitable number of electrode configurations from among the first portion have been selected within a predefined interval, and automatically testing a second portion of the set of electrode configurations in a second order if the suitable number of electrode configurations from among the first portion are not selected within the predefined interval. The programmer may further allow the selection of the tested electrode configurations, and adjusting parameters during the testing, wherein the adjusting is controllably shared in parallel between a clinician and a patient.
Abstract:
The present technology is directed generally to systems and methods for selecting neural modulation contacts from among multiple contacts. A system in accordance with a particular embodiment includes a patient implantable signal delivery system having (n) contacts positioned to deliver therapy signals to a patient, where (n) is greater than three, and an external signal generator coupled to the signal delivery device and having a computer-readable medium containing instructions that, when executed, perform the operations of (a) identifying a contact pair, (b) delivering neural modulation signals to the contact pair, (c) changing one or more of the contacts of the contact pair, and (d) repeating operations (b)-(c) for each of at most (n−1) unique contact pairs.
Abstract:
Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.