Abstract:
In one embodiment, the semiconductor device includes a non-volatile memory cell array. Memory cells of the non-volatile memory cell array are resistance based, and each memory cell has a resistance that changes over time after data is written into the memory cell. A write address buffer is configured to store write addresses associated with data being written into the non-volatile memory cell array, and a read unit is configured to perform a read operation to read data from the non-volatile memory cell array. The read unit is configured to control a read current applied to the non-volatile memory cell array during the read operation based on whether a read address matches one of the stored write addresses and at least one indication of settling time of the data being written into the non-volatile memory cell array.
Abstract:
A semiconductor memory device includes a memory cell array and the memory cell array includes: a plurality of memory blocks and at least one setting unit. The at least one setting unit stores a location and a size of a boot data storage region within the plurality of memory blocks that stores boot data. The at least one setting units may include a register for setting usage of each memory block as a boot block. The semiconductor device may be a phase-change memory.
Abstract:
A semiconductor memory device comprises a memory cell array comprising memory cells of a first type. The memory cell array performs write and read operations in response to signals designed for the operation of a memory cell array comprising memory cells of a type other than the first type.
Abstract:
There are provided a bias voltage generator, a semiconductor memory device having the bias voltage generator, and a method for generating the bias voltage. The bias voltage generator which generates the bias voltage to control a sensing current supplied to a memory cell for sensing data is characterized in that the bias voltage is output in response to an input voltage being applied, so that a slope of the bias voltage to the input voltage is different in at least two sections divided corresponding to a level of the input voltage.
Abstract:
An apparatus and operating method of a nonvolatile memory device having three-level nonvolatile memory cells is used to store more than one bit of data in a nonvolatile memory cell. In addition, the data can be selectively written through a write-verify operation, thereby improving write operation reliability. The operating method includes providing a memory cell array having first through third nonvolatile memory cells where each memory cell is capable of storing one among first data through third data corresponding to first through third resistance levels, respectively. Each of the resistance levels is different from one another. First and the third data are written to the first and third nonvolatile memory cells, respectively, during a first interval of a write operation. Second data is written to the second nonvolatile memory cell during a second interval of the write operation.
Abstract:
A braid-reinforced composite hollow fiber membrane is disclosed. The braid-reinforced composite hollow fiber membrane comprising a reinforcing material of a tubular braid and a polymer resinous thin film coated on the surface of the tubular braid is characterized in that: the tubular braid comprises multifilaments made of monofilaments having a fineness of 0.01 to 0.4 denier, and the peeling strength of the tubular braid and a polymer resinous thin film coated on the surface thereof is 1 to 10 MPa. In the composite hollow fiber membrane, the fineness of the mono filaments constituting the tubular braid of the reinforcing material is small, that is, 0.01 to 0.4 denier, thus the surface area of the tubular braid contacted with the polymer resinous thin film is increased. Thus, the peeling strength of the tubular braid and the polymer resinous thin film coated on the surface thereof is excellent, and at the same time, the initial wetting property of the composite hollow fiber membrane is excellent, that is, 80 to 120%, due to a capillary tube phenomenon or the like.
Abstract:
Disclosed is a submerged hollow fiber membrane module which is easy to expand, has a small installation area, and exhibits excellent contamination prevention and durability. The submerged hollow fiber membrane module comprises: (I) a module body divided into two portions which has a permeated water collection space (5) and a permeated water outlet (3); (II) module support tubes (17) which are vertically connected to the upper and lower ends of the module body; (III) a plate type module header insertion layer which is provided with hollow fiber membrane spaces (10), and is inserted into the module body; (IV) a plate type diffusion layer which is provided with a diffusion port (4) and diffusion tubes (11) and is inserted into the module body subsequent to the module header insertion layer; and (V) module headers which are inserted into the module header insertion layer.
Abstract:
A method of testing PRAM devices is disclosed. The method simultaneously writes input data to a plurality of memory banks by writing set data to a first group of memory banks and writing reset data to a second group of memory banks, performs a write operation test by comparing data read from the plurality of memory banks with corresponding input data, and determines a fail cell in relation to the test results.
Abstract:
A semiconductor memory device includes a memory cell array, a mode setting circuit, a parity data generation unit, and a data error detection and correction unit. The memory cell array has a plurality of first memory banks for storing normal data, and a predetermined number of second memory banks less than the number of the first memory banks for storing parity data according to control of a first flag signal. The mode setting circuit sets the first flag signal and a second flag signal controlling based on whether a separate memory bank is used to store the parity data in the second memory banks. The parity data generation unit receives normal write data during a write operation, generates parity data with respect to the normal write data in response to the second flag signal, and outputs the normal data and the parity data. The data error detection and correction unit receives normal read data and parity read data read from the memory cell array during a read operation, detects errors of the normal read data in response to the second flag signal, corrects the normal read data when the errors are detected, and outputs the corrected read data.
Abstract:
A multi-port phase change random access memory (PRAM) cell, includes a PRAM element including a phase change material, a writing controller configured to operate in correspondence with a writing word line, the writing controller connecting a writing bit line to the PRAM element, and a reading controller configured to operate in correspondence with a reading word line, the reading controller connecting the PRAM element to a reading bit line.