Abstract:
A method of operating a nonvolatile memory device is provided as follows. The nonvolatile memory device includes memory blocks each of which has word lines. A setup voltage is applied to the word lines. A word line voltage is applied to a first word line selected from the word lines. Recovery voltages are applied to the word lines. Each recovery voltage is applied to at least one corresponding word line of the word lines. The recovery voltages have different voltage levels from each other.
Abstract:
A phase change memory device may include a memory cell array, a write driver, and/or a control unit. The memory cell array may include a plurality of memory cells. The write driver may be configured to provide a program current to the memory cell array for setting a state of a phase change material to program a selected memory cell. The write driver may be configured to provide the program current such that the program current has a plurality of steps. The control unit may be configured to receive step information for adjusting a magnitude and a width of each step of the program current during a test operation and provide the step information to the write driver during a normal operation.
Abstract:
In a phase-change random access memory (PRAM) device, a write operation is performed by applying a set pulse to failed PRAM cells. The set pulse comprises a plurality of stages sequentially decreasing from a first current magnitude to a second current magnitude. The first current magnitude or the second current magnitude varies from one write loop to another.
Abstract:
A phase change memory device may include a memory cell array, a write driver, and/or a control unit. The memory cell array may include a plurality of memory cells. The write driver may be configured to provide a program current to the memory cell array for setting a state of a phase change material to program a selected memory cell. The write driver may be configured to provide the program current such that the program current has a plurality of steps. The control unit may be configured to receive step information for adjusting a magnitude and a width of each step of the program current during a test operation and provide the step information to the write driver during a normal operation.
Abstract:
A phase change memory device includes a memory cell array having a plurality of phase change memory cells, a read bias generating circuit, a clamping circuit and a clamping control signal generating circuit (CCSGC). The read bias generating circuit provides a sensing node with a read bias for reading a resistance level of a selected phase change memory cell. The clamping circuit controls an amount of clamping current flowing into a bit line connected with the selected phase change memory cell. The CCSGC provides the clamping control signal to the clamping circuit and adjusts a level of the clamping control signal.
Abstract:
A phase change memory device has a word line driver layout which allows for a reduction in the size a core area of the device. In one aspect, phase change memory device includes a plurality of memory cell blocks sharing a word line, and a plurality of word line drivers driving the word line. Each of the word line drivers includes a precharge device for precharging the word line and a discharge device for discharging the word line, and where the precharge device and the discharge device are alternately located between the plurality of memory cell blocks.
Abstract:
A nonvolatile memory device includes a nonvolatile memory cell, a read circuit and a control bias generating circuit. The nonvolatile memory cell has a resistance level that changes depending on stored data. The read circuit reads the resistance level of the nonvolatile memory cell by receiving a control bias and supplying the nonvolatile memory cell a read bias based on the control bias. The control bias generating circuit receives an input bias, generates the control bias based on the input bias and supplies the control bias to the read circuit. A slope of the control bias to the input bias is less than 1.
Abstract:
There are provided a bias voltage generator, a semiconductor memory device having the bias voltage generator, and a method for generating the bias voltage. The bias voltage generator which generates the bias voltage to control a sensing current supplied to a memory cell for sensing data is characterized in that the bias voltage is output in response to an input voltage being applied, so that a slope of the bias voltage to the input voltage is different in at least two sections divided corresponding to a level of the input voltage.
Abstract:
A method of performing a program-suspend-read operation in a PRAM device comprises programming a write block comprising N unit program blocks in response to a program operation request, and suspending the program operation after programming M unit program blocks, where M is less than N, in response to a read operation request. The method further comprises executing the requested read operation, and then resuming the programming of the write data block and programming (N−M) remaining unit program blocks.
Abstract:
A phase change memory device includes a memory cell array having a plurality of phase change memory cells, a read bias generating circuit, a clamping circuit and a clamping control signal generating circuit (CCSGC). The read bias generating circuit provides a sensing node with a read bias for reading a resistance level of a selected phase change memory cell. The clamping circuit controls an amount of clamping current flowing into a bit line connected with the selected phase change memory cell. The CCSGC provides the clamping control signal to the clamping circuit and adjusts a level of the clamping control signal.