摘要:
A non-volatile semiconductor device includes a memory cell in a first area of a substrate, a low voltage transistor in a second area of the substrate, and a high voltage transistor in a third area of the substrate. The memory cell includes a tunnel insulation layer formed on the substrate, a charge trapping layer pattern formed on the tunnel insulation layer in the first area of the substrate, a blocking layer pattern formed on the charge trapping layer pattern and a control gate formed on the blocking layer pattern. The control gate has a width substantially smaller than a width of the blocking layer pattern and the width of the control gate is substantially smaller than a width of the charge trapping layer pattern. In addition, an offset is formed between the control gate and the blocking layer pattern such that a spacer is not formed on a sidewall of the control gate.
摘要:
Example embodiments relate to a method of forming a recess and a method of manufacturing a semiconductor device having the same. The method includes forming a field region defining an active region in a substrate. The active region extends in a first direction in the substrate. The method further includes forming a preliminary recess extending in a second direction different from the first direction and crossing the active region in the substrate, plasma-oxidizing the substrate to form a sacrificial oxide layer along a surface of the substrate having the preliminary recess, and removing portions of the sacrificial oxide layer and the active region by plasma etching to form a recess having a width larger than a width of the preliminary recess, where an etch rate of the active region is one to two times greater than an etch rate of the sacrificial oxide layer.
摘要:
Some methods are directed to manufacturing charge trap-type non-volatile memory devices. An isolation layer pattern can be formed that extends in a first direction in a substrate. A recess unit is formed in the substrate by recessing an exposed surface of the substrate adjacent to the isolation layer pattern. A tunnel insulating layer and a charge trap layer are sequentially formed on the substrate. The tunnel insulating layer and the charge trap layer are patterned to form an isolated island-shaped tunnel insulating layer pattern and an isolated island-shaped charge trap layer pattern by etching defined regions of the substrate, the isolation layer pattern, the tunnel insulating layer, and the charge trap layer until a top surface of the charge trap layer that is disposed on a bottom surface of the recess unit is aligned with a top surface of the isolation layer pattern. A blocking insulating layer is formed that covers the charge trap layer pattern, the isolation layer pattern, and a defined region of the substrate interposed between the charge trap patterns. A gate electrode pattern is formed on the blocking insulating layer to face the charge trap layer pattern. This manufacturing process may reduce charge spreading between unit memory cells and/or may prevent/avoid reduction in the breakdown voltage of the blocking insulating layer.
摘要:
Example embodiments relate to a semiconductor memory device and a method of forming the semiconductor memory device. The semiconductor memory device may include a first interlayer insulating layer on a semiconductor substrate. A bit line may be arranged in a first direction on the first interlayer insulating layer. A bit line contact pad may be disposed in the first interlayer insulating layer and electrically connected to the bit line. A storage contact pad may be disposed in the first interlayer insulating layer. A top surface of the bit line contact pad may be lower than a top surface of the storage contact pad.
摘要:
In a method for determining the degree of charge-up induced by plasma used for manufacturing a semiconductor device and an apparatus therefor, a predetermined region on a surface of a wafer on which a plasma process has been performed is repeatedly scanned with a primary electron beam. Secondary electrons generated by a reaction between the primary electron beam and the surface of the wafer that are emitted to the outside of the surface of the wafer are collected. The degree of charge-up induced at the surface of the wafer by the plasma used during the plasma process is determined from the change in the amount of collected secondary electrons. Determination as to whether a contact hole is opened or as to the degree of degradation of a gate insulating layer is made based on the degree of charge-up.
摘要:
In a method of forming a self-aligned contact, gates are formed on a semiconductor substrate in a striped pattern. Bit lines are formed in a striped pattern that extends cross-wise to the gates. The bit lines are isolated from one another by a first interlayer insulation layer. Next, a second interlayer insulation layer is formed between the bit lines, and a photoresist film pattern is formed on the second interlayer insulation layer. The photoresist film pattern is used for forming contact holes extending between the gates down to conductive pads. The contact holes are filled to form conductive plugs that contact the conductive pads. The photoresist film pattern is formed as a series of stripes which extend parallel to the gates. The stripes of photoresist expose segments of the bit lines and the portions of the second interlayer insulation layer disposed directly above the conductive film pads, thereby securing a sufficient alignment margin, and exposing a large underlying area to be etched in forming the contact holes. To form a semiconductor device, a third interlayer insulation layer, an etch stop layer, an oxide layer and a hard mask layer are formed on the conductive plugs. Next, a second photoresist film pattern is formed on the hard mask layer. The hard mask layer and the oxide layer are etched using the second photoresist film pattern as an etching mask until the etch stop layer is exposed. Second contact holes for use in forming capacitor lower electrodes are formed by sequentially removing the exposed etching stop layer and the exposed third interlayer insulation layer using the hard mask layer as an etching mask, until the second contact holes expose the conductive plugs.
摘要:
A method of manufacturing a semiconductor device including various contact studs is provided. According to the method, a plurality of contact holes for various metal contact studs aligned to a bit line, a gate, a semiconductor substrate, or an electrode are formed simultaneously after a capacitor formation process. In this case, an etch stop pattern provided for stopping a selective etching process for forming the contact holes covers the bit line or conductive plugs formed on the semiconductor substrate. The thickness of a first etch stop pattern formed on the bit line or an electrode is similar or substantially the same as a second etch stop pattern formed on conductive plugs. To this end, the method involves selectively removing a capping insulating layer on the bit line for a self aligned contact (SAC) process for forming a conductive pad connected to a capacitor and then depositing a separate etch stop layer. Alternatively, the method may involve reducing the thickness of the capping insulating layer to use it as the first etch stop pattern and forming another second etch stop pattern. In this case, a process of patterning an upper electrode of a capacitor is performed, followed by a process of etching the capping insulating layer.
摘要:
A semiconductor memory device and manufacturing method, including a bit line connector and a lower electrode connector that respectively connect a bit line and a capacitor lower electrode of the device to active areas of a semiconductor substrate. The connectors are formed using a line-type self-aligned photoresist mask pattern positioned on an interlevel dielectric layer formed on the substrate, which exposes only a portion of the dielectric layer corresponding to a source region and which extends in a direction which a gate electrode extends, to provide a misalignment margin. The bit line connector and the lower electrode connector are respectively formed by one-time mask processes. A contact hole for the bit line connector in a cell area, and a contact hole for a metal wiring plug in a peripheral area are simultaneously formed, alleviating etching burden during subsequent forming of a metal wiring pad.