Abstract:
A protective layer for a PDP, includes a doping source layer containing at least one dopant, and a body layer which contacts the doping source layer and includes at least one dopant diffused from the doping source layer. The protective layer is capable of reducing dopant loss and avoiding trade-offs/conflicts between a donor dopant and an acceptor dopant.
Abstract:
Provided are a protective layer made of magnesium oxide containing at least one rare earth element selected from the group consisting of the rare earth elements, in which the content of the at least one rare earth element is from about 5.0×10−5 to about 6.0×10−4 per 1 part by weight of the magnesium oxide, a composite for forming the protective layer, a method of forming the protective layer, and a plasma display panel including the protective layer. The protective layer can reduce a discharge delay time and the temperature dependency of the discharge delay time, and thus, is suitable for single scan and an increase in Xe content.
Abstract:
A method for fabricating a semiconductor device includes forming at least one gate pattern over a substrate, forming a first insulation layer over the gate patterns and the substrate, etching the first insulation layer in a peripheral region to form at least one gate pattern spacer in the peripheral region, forming a second insulation layer over the substrate structure, etching the second insulation layer in a cell region to a given thickness, forming an insulation structure over the substrate structure, and etching the insulation structure, the etched first insulation layer and second insulation layer in the cell region to form a contact hole.
Abstract:
Provided are a protecting layer for a plasma display panel (PDP), a method of forming the same, and a PDP including the protecting layer. The protecting layer includes a magnesium oxide-containing layer having a surface to which magnesium oxide-containing particles having a magnesium vacancy-impurity center (VIC) are attached. The protecting layer is resistant to plasma ions and has excellent electron emission effects, and thus, a PDP including the protecting layer can be operated at low voltage with high discharge efficiency.
Abstract:
The present invention relates to a sustained release film formulation for healing wound comprising epidermal growth factor, chitosan, viscosity modifiers, plasticizers, and stabilizers. Specifically, the present invention relates to a sustained release film formulation for healing wound comprising epidermal growth factor as an effective ingredient and chitosan as a main base, and additionally comprising one or more antioxidants selected from the group consisting of EDTA and vitamin C; one or more viscosity modifiers selected from the group consisting of hydroxypropylmethylcellulose, gellan gum and pullulan; and one or more plasticizers selected from the group consisting of glycerin, propylene glycol, polyethylene glycol, polyvinyl alcohol and polyvinylpyrrolidone thereto. When the present film is attached to wound site, it absorbs exudation from wound site, and so is changed to hydrogel to keep wound site humid, which is good for wound-healing. And, the present film has superior attachment property to human body, and antifungal activity. Thus, the present film has more merits than simple ointment/cream formulation.
Abstract:
A method and system are provided for fabricating a semiconductor device that includes a vertical channel transistor. An area of a buried bit line is uniformly formed by an isolation trench. The width of the isolation trench is adjusted by controlling the thickness of spacers. Consequently, the area of the buried bit line is relatively large compared with that of a typical buried bit line. The resistance characteristics of the buried bit line are improved and stability and reliability of the semiconductor device are ensured.
Abstract:
The present invention is a method for testing a contact open capable of effectively testing a contact open defect in an In-line as securing a mass productivity. The method includes the steps of: performing a photolithography process for forming a contact; forming a contact hole by performing a contact etching process after sampling at least one wafer; depositing a conductive layer on the wafer provided with the contact hole; isolating the conductive layer within the contact hole; performing a test for testing a contact open interface to check whether a remaining layer is existed in an interface between the conductive layer and a lower structure of the conductive layer; and performing a process for etching the contact of a main lot based on a test result.
Abstract:
Disclosed is a method for fabricating a semiconductor device capable of preventing an inter-layer insulation layer from being damaged during a wet cleaning process due to a density difference created by reliance on a thickness of a SOG layer subjected to a curing process and of overcoming defects caused by an improper contact opening in a certain region and a punch taken place by micro voids of an APL layer. Particularly, the method includes the steps of: forming a plurality of conductive structure on a substrate; forming a spin-on-glass layer; curing the spin-on-glass layer; forming an advanced-planarization-layer on the spin-on-glass layer; and forming a plurality of contact holes by selectively etching the advanced-planarization-layer and the spin-on-glass layer, thereby exposing portions of the substrate.
Abstract:
A method for fabricating a semiconductor device includes forming a first pattern over a substrate, forming an oxide-based layer over the first pattern, forming a hard mask layer over the oxide-based layer, etching the hard mask layer at a first substrate temperature, and etching the oxide-based layer to form a second pattern, wherein the oxide-based layer is etched at a second substrate temperature which is greater than the first substrate temperature using a gas including fluorine (F) and carbon (C) as a main etch gas.
Abstract:
A method for fabricating a storage node contact in a semiconductor device includes forming a plurality of bit line patterns, each bit line pattern including a bit line hard mask formed over a bit line conductive layer, forming an inter-layer insulation layer filled between the bit line patterns, planarizing the inter-layer insulation layer until top portions of the bit line hard masks are exposed, partially etching the inter-layer insulation layer to form first open regions, enlarging a width of the first open regions, forming a capping layer to cover the top portions of the bit line hard masks and to cover a surface of the first open regions, etching the capping layer and remaining portions of the inter-layer insulation layer between the bit line patterns to form second open regions below the first open regions, and forming storage node contacts filling in the first and second open regions.