摘要:
Vanadium oxide nanoparticles were produced with vanadium in a variety of oxidation states and with different crystalline lattice structures. These particles preferably have an average diameter of 150 nm or less with a narrow distribution of diameters. The particles manifest unique properties that result from the small particle size and correspondingly large surface area. A variety of the vanadium oxide nanoparticles can be produced by a versatile laser pyrolysis arrangement. These nanoparticles can be further processed to change the properties of the particles without destroying the nanoscale size of the particles.
摘要:
Polymer based solar cells incorporate nanoscale carbon particles as electron acceptors. The nanoscale carbon particles can be appropriate carbon blacks, especially modified laser black. Conducting polymers are used in the solar cells as electron donors upon absorption of light. Preferred solar cell structures involve corrugation of the donor/acceptor composite material such that increased amounts of electricity can be produced for a given overall area of the solar cell.
摘要:
Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical, optical and electro-optical devices can be formed from the composites.
摘要:
Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
摘要:
Successful dispersion approaches are described for the formation of dispersion of dry powders of inorganic particles. In some embodiments, it is desirable to form the dispersion in two processing steps in which the particles are surface modified in the second processing step. Composites can be formed using the well dispersed particles to form improved inorganic particle-polymer composites. These composites are suitable for optical applications and for forming transparent films, which can have a relatively high index or refraction. In some embodiments, water can be used to alter the surface chemistry of metal oxide particles.
摘要:
Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
摘要:
Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical, optical and electro-optical devices can be formed from the composites.
摘要:
Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
摘要:
Nanoscale UV absorbing particles are described that have high UV absorption cross sections while being effectively transparent to visible light. These particles can be used to shield individuals from harmful ultraviolet radiation. These particles can also be used in industrial processing especially to produce solid state electronic devices by creating edges of photoresist material with a high aspect ratio. The UV absorbing particles can also be used as photocatalysts that become strong oxidizing agents upon exposure to UV light. Laser pyrolysis provides an efficient method for the production of suitable particles.
摘要:
Successful dispersion approaches are described for the formation of dispersion of dry powders of inorganic particles. In some embodiments, it is desirable to form the dispersion in two processing steps in which the particles are surface modified in the second processing step. Composites can be formed using the well dispersed particles to form improved inorganic particle-polymer composites. These composites are suitable for optical applications and for forming transparent films, which can have a relatively high index or refraction. In some embodiments, water can be used to alter the surface chemistry of metal oxide particles.