Abstract:
A method for forming a semiconductor device is provided. In one embodiment, the method includes providing a semiconductor substrate with a surface region. The surface region includes one or more layers overlying the semiconductor substrate. In addition, the method includes depositing a dielectric layer overlying the surface region. The dielectric layer is formed by a CVD process. Furthermore, the method includes forming a diffusion barrier layer overlying the dielectric layer. In addition, the method includes forming a conductive layer overlying the diffusion barrier layer. Additionally, the method includes reducing the thickness of the conductive layer using a chemical-mechanical polishing process. The CVD process utilizes fluorine as a reactant to form the dielectric layer. In addition, the dielectric layer is associated with a dielectric constant equal or less than 3.3.
Abstract:
In the present invention, a semiconductor device is formed which includes an MIM capacitor located on the upper surface of a heterostructure from which the emitter, base and collector sections of a nearby HBT are defined. In this way the capacitor and HBT share a substantially common structure, with the base and emitter electrodes of the HBT fashioned from the same metal layers as the upper and lower capacitor plates, respectively. Furthermore, as the insulator region of the capacitor is formed prior to definition of the HBT structure, the dielectric material used can be deposited by means of a plasma enhanced process, without damaging the HBT structure.
Abstract:
A process for forming a high dielectric constant, (High K), layer, for a metal-oxide-metal, capacitor structure, featuring localized oxidation of an underlying metal layer, performed at a temperature higher than the temperature experienced by surrounding structures, has been developed. A first iteration of this process features the use of a laser ablation procedure, performed to a local region of an underlying metal layer, in an oxidizing ambient. The laser ablation procedure creates the desired, high temperature, only at the laser spot, allowing a high K layer to be created at this temperature, while the surrounding structures on a semiconductor substrate, not directly exposed to the laser ablation procedure remain at lower temperatures. A second iteration features the exposure of specific regions of an underlying metal layer, to a UV, or to an I line exposure procedure, performed in an oxidizing ambient, with the regions of an underlying metal layer exposed to the UV or I line procedure, via clear regions in an overlying photolithographic plate. This procedure also results in the formation of a high K layer, on a top portion of the underlying metal layer.
Abstract:
A transient protection circuit is described which provides electrostatic discharge (ESD) protection for an internal circuit of an IC. The transient protection circuit comprises two Zener diodes connected in series between the input pad and the internal circuit of the IC. A sufficiently large ESD pulse will drive one the two Zener diodes into breakdown mode, thereby reducing the magnitude of the ESD pulse to the remainder of the circuit. Resistive means are paralleled with the Zener diodes to provide a signal path at non-ESD voltages. To help shunt the ESD current away from the internal circuit, PMOS and NMOS transistors are connected in parallel between the positive and the negative voltage supply and their junction is connected to the internal circuit. Negative ESD pulses cause the PMOS transistors to turn on, dumping the ESD energy into the positive voltage supply, while positive ESD pulses cause the NMOS transistors to turn on, dumping the ESD energy into the negative voltage supply. Voltage changes, caused by currents flowing through the resistive means, trigger parasitic SCRs into conduction to provide the bulk of the ESD protection.
Abstract:
A method of fabricating a transistor, comprising the following steps. A silicon semiconductor structure having spaced, raised, wedge-shaped dielectric isolation regions defining an active region there between is provided. Epitaxial silicon is grown over the active area to form an SEG region. A dummy gate is formed over the SEG region. Raised epitaxial silicon layers are grown over the SEG region adjacent the dummy gate. The dummy gate is removed, exposing the interior side walls of the raised epitaxial silicon layers. Sidewall spacers are formed on the exposed sidewalls of the raised epitaxial silicon layers. A gate oxide layer is grown over the SEG region and between the sidewall spacers of the raised epitaxial silicon layers. A layer of polysilicon is deposited over the structure and is planarized to form a gate conductor over the SEG region and between the sidewall spacers of the raised epitaxial silicon layers. The sidewall spacers are removed. No HDP process trench fill is required to form the STIs and no CMP process is required to planarized the STIs.
Abstract:
A method of forming thick and thin gate oxides comprising the following steps. A silicon semiconductor substrate having first and second active areas separated by shallow isolation trench regions is provided. Oxide growth is selectively formed over the first active area by UV oxidation to form a first gate oxide layer having a first predetermined thickness. The first and second active areas are then simultaneously oxidized whereby the first predetermined thickness of the first gate oxide layer is increased to a second predetermined thickness and a second gate oxide layer having a predetermined thickness is formed in the second active area. The second predetermined thickness of the first oxide layer in the first active area is greater than the predetermined thickness of the second oxide layer in the second active area.