摘要:
The present invention provides a semiconductor device, including a substrate, a first semiconductor layer, a plurality of first sub recess, a plurality of insulation structures and a first top semiconductor layer. The substrate has a first region disposed within an STI. The first semiconductor layer is disposed in the first region. The first sub recesses are disposed in the first semiconductor layer. The insulation structures are disposed on the first semiconductor layer. The first top semiconductor layer forms a plurality of fin structures, which are embedded in the first sub recesses, arranged alternatively with the insulation structures and protruding over the insulation structures.
摘要:
A semiconductor device includes a first semiconductor region having a buried oxide layer formed therein, a second semiconductor region in which the buried oxide layer does not exist, a trench formed to such a depth as to reach at least the buried oxide layer in a boundary portion between the first and second semiconductor regions, and an isolation insulating layer buried in the trench.
摘要:
A process and structure for forming electrical devices. The process and structure provide for forming an insulating layer on a substrate. A conductive region is then formed in the insulating layer by implanting silicon atoms into the insulating layer. Further, a plurality of different conductive regions can be formed in the insulating layer. An electrical device such as a transistor or a diode can then be formed in each of the conductive regions. Because the conductive regions are formed in a conductive region which is largely electrically isolated from other conductive regions there is little possibility for adjacent devices to cause interference.
摘要:
Integrated circuit devices are formed in a substrate wafer using selective epitaxial growth (SEG). Non-uniform epitaxial wafer thickness results when the distribution of SEG regions across the surface of the wafer is non-uniform, resulting in loading effects during the growth process. Loading effects are minimized according to the invention by adding passive SEG regions thereby giving a relatively even distribution of SEG growth regions on the wafer. The passive regions remain unprocessed in the finished IC device.
摘要:
A silicon-on-insulator semiconductor device and manufacturing method therefor is provided in which a single wafer die contains a transistor over an insulator layer to form a fully depleted silicon-on-insulator device and a transistor formed in a semiconductor island over an insulator structure on the semiconductor wafer forms a partially depleted silicon-on-insulator device.
摘要:
A semiconductor device comprises: a semiconductor substrate; an insulating layer provided on said semiconductor substrate; a first semiconductor layer provided on said insulating layer; a plurality of openings penetrating said first semiconductor layer and said insulating layer and reaching said semiconductor substrate; and second semiconductor layers filling said openings by selective growth and connected to said semiconductor substrate, wherein areal sizes of said plurality of openings are substantially equal to each other.
摘要:
A method of fabricating, from a first semiconductor substrate having two parallel main surfaces, a system including an islet of a semiconductor material surrounded by an insulative material and resting on another insulative material includes forming a layer of a first insulative material, and forming on the top main surface of the first semiconductor substrate a thin semiconductor layer forming the islet of semiconductor material. The thin semiconductor layer can be selectively etched relative to the first semiconductor substrate. A layer of a second insulative material is formed on exposed surfaces of the islet of semiconductor material and the thin semiconductor layer. The method further includes removing the first semiconductor substrate.
摘要:
A silicon-on-insulator trench isolation structure is disclosed that includes an active silicon-on-insulator region, an active bulk substrate region, and a trench region positioned between the active silicon-on-insulator region and the active bulk substrate region. The active silicon-on-insulator region is provided with a silicon-on-insulator film (42) positioned above a buried insulator layer (32). The active bulk substrate region may be provided between two trench regions such as a trench region (20) and a trench region (22). The trench region (20) is positioned between the active silicon-on-insulator region and the active bulk substrate region.
摘要:
A method for trench isolation of a silicon island for device fabrication using only conventional very large scale integration (VLSI) techniques is provided. The combination of the sidewall isolation achieved with the trench isolation and the underlying oxide film create a totally dielectrically isolated structure without the possibility of latch-up between adjacent devices.
摘要:
An integrated circuit may be formed by forming a buried isolation layer in an isolation recess in a single-crystal silicon-based substrate. Exposed lateral surfaces of the substrate at the buried isolation layer are covered with a dielectric sidewall. A seed trench is formed through the buried isolation layer to expose the substrate. A single-crystal silicon-based seed layer is formed through the seed trench, extending above the top surface of the buried isolation layer. A silicon-based non-crystalline layer is formed contacting the seed layer. A cap layer is formed over the non-crystalline layer. A radiant-induced recrystallization process converts the non-crystalline layer to a single-crystal layer aligned with the seed layer. The cap layer is removed and the single-crystal layer is planarized, leaving an isolated semiconductor layer over the buried isolation layer.