Abstract:
The technology relates to a damascene word line for a three dimensional array of nonvolatile memory cells. Partly oxidized lines of material such as silicon are made over a plurality of stacked nonvolatile memory structures. Word line trenches are made in the partly oxidized lines, by removing the unoxidized lines from the intermediate parts of the partly oxidized lines, leaving the plurality of oxidized lines at the outer parts of the plurality of partly oxidized lines. Word lines are made in the word line trenches over the plurality of stacked nonvolatile memory structures.
Abstract:
A semiconductor structure and a manufacturing method of the same are provided. The semiconductor structure includes a substrate, a first stacked structure, and a first conductive layer. The first stacked structure is formed on the substrate and includes a conductive structure and an insulating structure, and the conductive structure is disposed adjacent to the insulating structure. The first conductive layer is formed on the substrate and surrounds two side walls and a part of the top portion of the first stacked structure for exposing a portion of the first stacked structure.
Abstract:
A 3D memory device includes a plurality of ridge-shaped stacks, in the form of multiple strips of conductive material separated by insulating material, arranged as bit lines which can be coupled through decoding circuits to sense amplifiers. Diodes are connected to the bit lines at either the string select of common source select ends of the strings. The strips of conductive material have side surfaces on the sides of the ridge-shaped stacks. A plurality of word lines, which can be coupled to row decoders, extends orthogonally over the plurality of ridge-shaped stacks. Memory elements lie in a multi-layer array of interface regions at cross-points between side surfaces of the semiconductor strips on the stacks and the word lines.
Abstract:
A 3D stacked AND-type flash memory structure comprises several horizontal planes of memory cells arranged in a three-dimensional array, and each horizontal plane comprising several word lines and several of charge trapping multilayers arranged alternately, and the adjacent word lines spaced apart from each other with each charge trapping multilayer interposed between; a plurality of sets of bit lines and source lines arranged alternately and disposed vertically to the horizontal planes; and a plurality of sets of channels and sets of insulation pillars arranged alternatively, and disposed perpendicularly to the horizontal planes, wherein one set of channels is sandwiched between the adjacent sets of bit lines and source lines.
Abstract:
A 3D memory device includes an array of semiconductor body pillars and bit line pillars, dielectric charge trapping structures, and a plurality of levels of word line structures arranged orthogonally to the array of semiconductor body pillars and bit line pillars. The semiconductor body pillars have corresponding bit line pillars on opposing first and second sides, providing source and drain terminals. The semiconductor body pillars have first and second channel surfaces on opposing third and fourth sides. Dielectric charge trapping structures overlie the first and second channel surfaces, providing data storage sites on two sides of each semiconductor body pillar in each level of the 3D array. The device can be operated as a 3D AND-decoded flash memory.
Abstract:
Memory cells comprising: a semiconductor substrate having a source region and a drain region disposed below a surface of the substrate and separated by a channel region; a tunnel dielectric structure disposed above the channel region, the tunnel dielectric structure comprising at least one layer having a hole-tunneling barrier height; a charge storage layer disposed above the tunnel dielectric structure; an insulating layer disposed above the charge storage layer; and a gate electrode disposed above the insulating layer are described along with arrays and methods of operation.
Abstract:
A 3D memory device includes a plurality of ridge-shaped stacks, in the form of multiple strips of conductive material separated by insulating material, arranged as bit lines which can be coupled through decoding circuits to sense amplifiers. Diodes are connected to the bit lines at either the string select of common source select ends of the strings. The strips of conductive material have side surfaces on the sides of the ridge-shaped stacks. A plurality of word lines, which can be coupled to row decoders, extends orthogonally over the plurality of ridge-shaped stacks. Memory elements lie in a multi-layer array of interface regions at cross-points between side surfaces of the semiconductor strips on the stacks and the word lines.
Abstract:
Technology is described herein for manufacturing a three-dimensional 3D stacked memory structure having multiple layers of single crystal silicon or other semiconductor. The multiple layers of single crystal semiconductor are suitable for implementing multiple levels of high performance memory cells.
Abstract:
An integrated circuit memory comprises a set of lines each line having parallel X direction line portions in a first region and Y direction line portions in a second region. The second region is offset from the first region. The lengths of the X direction line portions are substantially longer than the lengths of the Y direction line portions. The X direction and Y direction line portions have respective first and second pitches with the second pitch being at least 3 times larger than the first pitch. Contact pickup areas are at the Y direction line portions. In some examples, the lines comprise word lines or bit lines. The memory can be created using multiple patterning methods to create lines of material and then the parallel X direction line portions and parallel Y direction line portions.
Abstract:
An injection method for non-volatile memory cells with a Schottky source and drain is described. Carrier injection efficiency is controlled by an interface characteristic of silicide and silicon. A Schottky barrier is modified by controlling an overlap of a gate and a source/drain and by controlling implantation, activation and/or gate processes.