Abstract:
A vehicular rearview assembly with a mirror element having a curved or rounded edge on the first surface that is fully observable from the front of the assembly, a complex peripheral ring, and a user interface with switches and sensors that activate and configure pre-defined function(s) or device(s) of the assembly in response to the user input applied to the user interface. The mirror element is supported by a hybrid carrier co-molded of at least two materials, a portion of which is compressible between the housing shell and an edge of the mirror element. The peripheral ring may include multiple bands. Electrical communications between the electronic circuitry, the mirror element, and the user interface utilize connectors configured to exert a low contact force, onto the mirror element, limited in part by the strength of adhesive affixing the EC element to an element of the housing of the assembly.
Abstract:
An electro-optic assembly for use in a vehicle having a windshield is provided and includes a first arcuate substrate having a first surface with an anti-reflective coating and a second surface. A second arcuate substrate includes a third surface and a fourth surface with an anti-reflective coating. The first and second substrates are positioned such that the second and third surfaces are at least 0.1 mm apart. A seal is disposed between the first and second substrates and located substantially about a periphery of the electro-optic assembly. An electro-optic medium is positioned in a cavity defined by the first substrate, the second substrate, and the seal, the electro-optic medium including a refractive index greater than 1.2. The second surface is configured to receive and reflect incident light projected from a projector, thereby displaying information that appears to be displayed forward of the windshield.
Abstract:
A transparency includes a first substrate having a first surface and a second surface. A second substrate includes a third surface and a fourth surface. An optical coating is positioned on the fourth surface. The optical coating having a refractive index of greater than about 1.8 and an nk ratio of greater than about 0.6. The reflectance of the fourth surface has a reflectance of less than about 1.2% as measured from the first surface.
Abstract:
An electro-optic system is provided that includes a front element having first and second surfaces, a rear element including third and fourth surfaces, wherein the front and rear elements are sealably bonded together in a spaced-apart relationship to define a chamber, and an electro-optic medium contained in the chamber, and the electro-optic medium is adapted to be in at least a high transmittance state and a low transmittance state. The electro-optic system further includes a display device in optical communication with the electro-optic element, the display device including at least one light source and is configured to emit at least a first primary and a second primary, the first and second primaries each having a first hue (hab) when viewed through the electro-optic element in approximately the high transmittance state and a second hue (hab′) when viewed through the electro-optic element in approximately the low transmittance state, wherein a change in the first and second hues (Δhab) for both first and second primaries is less than approximately 31 degrees.
Abstract:
Anisotropic film laminates for use in image-preserving reflectors such as rearview automotive mirror assemblies, and related methods of fabrication. A film may comprise an anisotropic layer such as a light-polarizing layer and other functional layers. The film having controlled water content is heated under omnidirectional pressure and vacuum to a temperature substantially equal to or above a lower limit of a glass-transition temperature range of the film so as to be laminated to a substrate. The laminate is configured as part of a mirror structure so as to increase contrast of light produced by a light source positioned behind the mirror structure and transmitted through the mirror structure towards a viewer. The mirror structure is devoid of any extended distortion and is characterized by SW and LW values less than 3, more preferably less than 2, and most preferably less than 1.
Abstract:
The present invention relates to improved electro-optic rearview mirror elements and assemblies incorporating the same, including processes for making such elements and assemblies.
Abstract:
An apparatus, method, and process that includes a substantially transparent substrate having a first surface, a second surface, and an edge extending around at least a portion of a perimeter of the substantially transparent substrate, wherein the edge is a laser induced channel edge having enhanced edge characteristics.
Abstract:
An electro-optic system is provided that includes a front element having first and second surfaces, a rear element including third and fourth surfaces, wherein the front and rear elements are sealably bonded together in a spaced-apart relationship to define a chamber, and an electro-optic medium contained in the chamber, and the electro-optic medium is adapted to be in at least a high transmittance state and a low transmittance state. The electro-optic system further includes a display device in optical communication with the electro-optic element, the display device including at least one light source and is configured to emit at least a first primary and a second primary, the first and second primaries each having a first hue (hab) when viewed through the electro-optic element in approximately the high transmittance state and a second hue (hab′) when viewed through the electro-optic element in approximately the low transmittance state, wherein a change in the first and second hues (Δhab) for both first and second primaries is less than approximately 31 degrees.
Abstract:
An asymmetrically reflective member is disclosed. This asymmetrically reflective member may be utilized in a rearview assembly to hide an imager disposed there behind. The member may comprise a substrate and an asymmetric transflective coating. The substrate may have a first side and a second side. The asymmetric transflective coating may be associated with the substrate. Additionally, the asymmetric transflective coating may have a transflective layer, a plurality of dielectric layers, and one or more absorptive layers interleaved with the plurality of dielectric layers. Further, the member may have a first side and a second side. The reflectance of the first side may be substantially greater than the reflectance of the second side.
Abstract:
An electro-optic element having multiple regions is disclosed. The electro-optic element comprises an electro-optic medium disposed between two electrodes. Further, the electro-optic medium is operable between activated and un-activated states based, at least in part, on exposure to an electrical potential. In some embodiments, in response to an electrical potential of a first polarity, the electro-optic medium may be substantially activated in one region and substantially un-activated in another region. In response to an electrical potential of a second polarity opposite the first polarity, the electro-optic medium may be substantially activated in both regions. In other embodiments, the electro-optic medium is operably activated such that electro-optic medium is activated in one region and un-activated in another region, regardless of polarity.