摘要:
A micro electromechanical (MEMS) switch suitable for use in medical devices is provided, along with methods of producing and using MEMS switches. In one aspect, a micro electromechanical switch including a moveable member configured to electrically cooperate with a receiving terminal is formed on a substrate. The moveable member and the receiving terminal each include an insulating layer proximate to the substrate and a conducting layer proximate to the insulating layer opposite the substrate. In various embodiments, the conducting layers of the moveable member and/or receiving terminal include a protruding region that extends outward from the substrate to switchably couple the conducting layers of the moveable member and the receiving terminal to thereby form a switch. The switch may be actuated using, for example, electrostatic energy.
摘要:
Formation of a feedthrough in a substrate for use in an implantable medical device is presented. A substrate includes a first surface and a second surface, and a via that extends through the first and the second surfaces. A dielectric layer is formed over one of a first surface of the substrate. Conductive material is introduced into the via to form a feedthrough.
摘要:
A hermetically sealed microelectromechanical system (MEMS) package for an implantable medical device is presented. The MEMS comprises a first substrate that includes an aperture. A feedthrough assembly is coupled to the aperture, the feedthrough assembly comprises a conductive element housed in a glass insulator member. A second substrate is coupled to the first substrate.
摘要:
A hermetically sealed microelectromechanical system (MEMS) package includes a MEMS switch having a movable portion and a stationary portion with an electrical contact thereon. A glass lid is anodically bonded to the MEMS switch to form a sealed cavity over the movable portion of the MEMS switch. The glass lid includes a contact aperture to allow access to the electrical contact on the stationary portion of the MEMS switch. A family of body-implantable hermetically-sealed MEMS packages are provided according to certain aspects and embodiments of the present invention.
摘要:
A micro electromechanical (MEMS) switch suitable for use in medical devices is provided, along with methods of producing and using MEMS switches. In one aspect, a micro electromechanical switch including a moveable member configured to electrically cooperate with a receiving terminal is formed on a substrate. The moveable member and the receiving terminal each include an insulating layer proximate to the substrate and a conducting layer proximate to the insulating layer opposite the substrate. In various embodiments, the conducting layers of the moveable member and/or receiving terminal include a protruding region that extends outward from the substrate to switchably couple the conducting layers of the moveable member and the receiving terminal to thereby form a switch. The switch may be actuated using, for example, electrostatic energy.
摘要:
A lead is connected to an integrated circuit in an implantable medical device in a lead bonding area that includes a lead-receiving recessed region. At least a portion of a lead conductor is bonded in the lead-receiving recessed region, making an electrical and mechanical connection to the integrated circuit that is strong and potentially biostable. In some embodiments, a filler material is provided around the recessed portion of the integrated circuit that receives the lead conductor, and a metal coating is provided around an outer surface of the filler material for additional mechanical stability.
摘要:
A lead is connected to an integrated circuit in an implantable medical device in a lead bonding region that includes a lead-receiving recessed region. At least a portion of a lead conductor is bonded in the lead-receiving recessed region, making an electrical and mechanical connection to the integrated circuit that is strong and potentially biostable. In some embodiments, a filler material is provided around the recessed portion of the integrated circuit that receives the lead conductor, and a metal coating is provided around an outer surface of the filler material for additional mechanical stability.
摘要:
A hermetically sealed microelectromechanical system (MEMS) package includes a MEMS switch having a movable portion and a stationary portion with an electrical contact thereon. A glass lid is anodically bonded to the MEMS switch to form a sealed cavity over the movable portion of the MEMS switch. The glass lid includes a contact aperture to allow access to the electrical contact on the stationary portion of the MEMS switch. A family of body-implantable hermetically-sealed MEMS packages are provided according to certain aspects and embodiments of the present invention.
摘要:
A bistable MEMS switch for use in selectively opening or closing electrical circuits included in an implantable medical device system is provided. The switch includes a central movable beam having a movable contact; a suspension system for supporting the movable beam and generating a contact force; an actuator for displacing the beam upon application of an activation signal, and a fixed contact for interfacing the movable contact when the switch is in a closed state. The switch is fabricated from a Si/SiO2/Si wafer using photolithography, DRIE and sacrificial oxide etching followed by metalization of electrical contact points with a wear-resistant metal or alloy. An actuation layer may be fabricated from the silicon substrate layer of the wafer and the signal layer may be fabricated from the top silicon layer. The actuation layer and signal layer are thereby electrically decoupled and mechanically coupled by the intervening SiO2 layer.
摘要:
In some embodiments, an implantable medical device (IMD) system may include one or more of the following elements: (a) an oxygen sensor for measuring oxygen extraction from blood flowing through a coronary sinus of a patient's heart, (b) an oxygen signal generated by the oxygen sensor, (c) an IMD coupled to the oxygen sensor, wherein the IMD is configured to output pacing pulses as a function of the oxygen signal, and (d) an atrial and a ventricular pacing lead coupled to the IMD to deliver the pacing pulses to the patient's heart, wherein the IMD generates the pacing pulses as a function of the oxygen signal, wherein the pacing pulses are adjusted by the IMD as a function of the oxygen signal, wherein the IMD is configured to adjust the pacing pulses to increase oxygen in the blood flow through the coronary sinus.