Abstract:
Disclosed herein are a compound represented by formula (1) that is capable of producing organic electroluminescence (EL) devices having excellent properties, an organic EL device containing the compound, and an electronic device containing the organic EL device. The organic EL device contains a organic thin film layer between a cathode and an anode, in which the organic thin film layer contains one or more layers and a light emitting layer, and at least one layer of the organic thin film layer contains the compound.
Abstract:
Provided are an organic EL device material that reduce the driving voltage of an organic EL device and increase the lifetime of the device as compared with a conventional organic EL device material. Also provided are organic electroluminescence devices containing the organic EL device material.
Abstract:
Provided are an organic electroluminescence device having high current efficiency and a long lifetime, and a biscarbazole derivative for realizing the device. The biscarbazole derivative has a specific substituent. The organic EL device has a plurality of organic thin-film layers including a light emitting layer between a cathode and an anode, and at least one layer of the organic thin-film layers contains the biscarbazole derivative.
Abstract:
An organic electroluminescent device containing, between an anode and a cathode facing each other, a first hole transporting layer, an adjacent layer adjacent to an emitting layer, and an emitting layer, in this order from the side of the anode, wherein the first hole transporting layer contains a compound represented by the following formula (1), is provided as an organic EL device that is capable of being driven at a low voltage and has a prolonged life time and high efficiency. (In the formula, R1 to R4, L1, Ar1, Ar2, m, n, p and q are as defined in the specification.)
Abstract:
An organic electroluminescence device contains an anode and a cathode facing each other, and intervening therebetween at least two hole transporting layers and a light emitting layer sequentially, and one of the hole transporting layers contains a compound having a particular structure having a fluorene structure at the center thereof, and is not adjacent to the light emitting layer. The organic electroluminescence device has a hole transporting layer having an increased thickness, is capable of being controlled in the thickness of the optical film, and has an enhanced device capability.
Abstract:
An organic electroluminescence device including a cathode, an anode, and an emitting layer disposed between the cathode and the anode, wherein the emitting layer includes a compound represented by the following formula (1) and one or more compounds selected from the group consisting of compounds represented by each of formulas (11), (21), (31), (41), (51), (61), (71) and (81). In the formula (1), at least one of R1 to R8 is a deuterium atom, and Ar2 is a monovalent group represented by following formula (2), (3) or (4).
Abstract:
An organic electroluminescence device comprising: a cathode; an anode; and an organic layer disposed between the cathode and the anode, wherein the organic layer includes an emitting layer and a first layer; the first layer is disposed between the cathode and the emitting layer; the emitting layer contains a compound represented by the following formula (A1); and the first layer contains a compound represented by the following formula (B1).
Abstract:
A nitrogen-containing aromatic heterocyclic derivative in which a nitrogen atom of an indenocarbazole skeleton optionally having a hetero atom or an indenoindole skeleton optionally having a hetero atom is bonded to a dibenzofuran or a dibenzothiophene directly or indirectly. The derivative realizes an organic EL device with a high emission efficiency and a long lifetime.
Abstract:
The compound represented by formula (1): wherein A, B, R1, and R2 are as defined in the description, provides organic electroluminescence (EL) devices having a high emission efficiency when operated at low voltage and a long lifetime and electronic devices including such organic EL devices.
Abstract:
Disclosed herein are compounds capable of producing organic electroluminescence (EL) devices having excellent properties, organic EL devices comprising the compounds, and electronic devices comprising the organic EL devices. The compounds of this disclosure are represented by formula (1) below, where A, B, C, and R1 to R11 are defined herein.