Abstract:
A method of communicating over a wideband communication channel divided into a plurality of sub-channels comprises dividing a single serial message intended for one of the plurality of communication devices into a plurality of parallel messages, encoding each of the plurality of parallel messages onto at least some of the plurality of sub-channels, and transmitting the encoded plurality of parallel messages to the communication device over the wideband communication channel.
Abstract:
Apparatus and methods of ultra-wideband (UWB) communication are provided. In one embodiment, an ultra-wideband transmitter includes a processor configured to generate data for transmission in the form of a plurality of ultra-wideband pulses. The transmitter includes a FEC encoder that generates a code word based on the data. The FEC includes a plurality of cyclic shift registers configured to receive and process the data, a plurality of fixed connections between each of the plurality of cyclic shift registers and a plurality of XOR gates communicating with the plurality of fixed connections. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
Systems and methods of ultra-wideband communication are provided. In one ultra-wideband communication system, a portion of a plurality of non-overlapping communication sub-channels are assigned to a first ultra-wideband communication device by a base station. Communication interference information is obtained by the first device, and then transmitted to and received by the base station. The base station then reduces the portion of non-overlapping sub-channels assigned to the first ultra-wideband communication device in response to the interference information, thereby creating a group of available non-overlapping sub-channels, which are assigned to a second ultra-wideband communication device. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
Apparatus and methods of ultra-wideband (UWB) communication are provided. In one embodiment, an ultra-wideband receiver receives a serial data stream comprising a plurality of ultra-wideband pulses. A serial to parallel converter then converts the serial data stream into a plurality of parallel data streams, which are then matched. A combiner then combines the data streams, which are then fed to an equalizer that includes a hard decision element, a past decision element and a future decision element. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
A Golay-code generator configured for generating Golay complementary code pairs comprises a sequence of delay elements configured for providing a predetermined set of fixed delays to at least a first input signal and a sequence of adaptable seed vector insertion elements configured for multiplying at least a second input signal by a variable seed vector, wherein each of a plurality of seed vectors corresponds to at least one predetermined piconet. The Golay-code generator may further comprise multiplexers configured for switching inputs and outputs of at least two delay elements in the sequence of delay elements to produce a plurality of compatible delay vectors. The Golay-code generator may further comprise a code-truncation module configured to shorten the Golay complementary code pairs for producing a plurality of daughter codes. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
Apparatus and methods of ultra-wideband (UWB) communication are provided. In one embodiment, an ultra-wideband receiver receives a serial data stream comprising a plurality of ultra-wideband pulses. A serial to parallel converter then converts the serial data stream into a plurality of parallel data streams, which are then matched. A combiner then combines the data streams, which are then fed to an equalizer that includes a hard decision element, a past decision element and a future decision element. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
A system and method of buffering data of a wireless communication system. The system and method maintain synchronization, end-to-end signaling and coding overhead bits needed to encapsulate data frames sent over wireless media. Additionally, the system and method compensate for transmitting and receiving clock variations. In one embodiment, the system uses framing of data with preamble, stuffing and signaling bits transmitted synchronously at a high data rate in the Industrial, Scientific and Medical (ISM) bands.
Abstract:
A system and method of timing estimation for use in a digital receiver within a communication system. A timing estimation block is provided within a digital receiver, where the input signal is processed at four or more samples per symbol and the estimation block operates in a feedforward manner. The algorithm calculates the timing offset by evaluating the spectral component at the symbol clock frequency. The spectral component is generated using a nonlinearity operation. However, the maximum likelihood non-data-aided timing estimation equation reveals an alternative approximation for the logarithm of the hyperbolic cosine function present in the maximum likelihood equation, which offers an excellent compromise between implementation complexity and variance performance. The estimated timing offset is then fed to a timing correction unit, which calculates the data samples corresponding to the sampling clock phase and removes the redundant samples. The ideal sampled signal is then forwarded to additional synchronization and functional units for further processing. This method is provided for a variety of digital receivers employing Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA) and or any combination of the principles of the above or other technologies. In accordance with one embodiment of the invention, a digital receiver system comprises an anti-aliasing filter, a sampling unit, a filtering block, a timing estimation block, a timing correction block and additional synchronization and functional units block.
Abstract:
Certain aspects of the present disclosure relate to methods for beamforming that achieve beamforming optimality criterions. Some proposed beamforming techniques are based on antenna directions with multiple resolutions.
Abstract:
A method of communication includes allocating a portion of a superframe centralized contention based period where the access method is based on directional ALOHA. The centralized contention based period is divided into equal time slots, and each sequential set of N time slots forms a time cycle. During a time cycle, a wireless device listens for requests from other wireless devices while it changes its receiving direction from one time slot to another.