Abstract:
According to one embodiment an array substrate includes a semiconductor layer scanning and signal lines first and second insulating layers a pedestal and a pixel electrode. The scanning line is opposed to the semiconductor layer. The first insulating layer is provided above the semiconductor layer. The signal line and the pedestal are connected to the semiconductor layer through first and second contact holes in the first insulating layer. The second insulating layer is provided above the pedestal. The pixel electrode is connected to the pedestal through a third contact hole in the second insulating layer. The signal line and the pedestal are provided in layers different from each other.
Abstract:
A light emitting element array is provided and includes substrate; light emitting elements arrayed to substrate; first anisotropic diffusion layer facing substrate with light emitting elements interposed between first anisotropic diffusion layer and substrate; and second anisotropic diffusion layer, wherein first anisotropic diffusion layer and second anisotropic diffusion layer are layered, first anisotropic diffusion layer and second anisotropic diffusion layer each include a region in an in-plane direction including a high refractive index region and a low refractive index region in a mixed manner, and absolute value of first angle formed by boundary between high refractive index region and low refractive index region of first anisotropic diffusion layer and direction perpendicular to substrate is different from absolute value of second angle formed by boundary between high refractive index region and low refractive index region of second anisotropic diffusion layer and direction perpendicular to substrate.
Abstract:
A lighting device includes a first light guide area sandwiched between partitions extending along a first direction, a first light emitting element emitting light in a first wavelength band, and a semi-transmitting reflective film covering the first light guide area, the first light guide area including a first protrusion, and a reflective film covering the first protrusion and each side of the partitions, the first light guide area including, a first part having a constant first width in a second direction crossing the first direction, and a second part adjacent to the first part and the first width decreasing as it recedes from the first part, wherein the first light emitting-element is arranged in the second part.
Abstract:
In a wall electrode liquid crystal display device, planar distribution of the wall structure and the electrode is optimized to improve a yield. A liquid crystal display device includes a plurality of pixels arranged in a matrix, each of the pixels having an insulator wall structure formed at a border of pixels, a wall electrode formed at a side surface of the wall structure of the border of the pixels, a source electrode which is continuous with the wall electrode and formed of a planar electrode extending in a planar direction, a first common electrode provided between source electrodes at both sides of the pixel to form a retentive capacitance, and a second common electrode provided between wall electrodes on both sides of the pixel. A slit which becomes a border of the wall electrodes of two adjacent pixels is disposed only on a top of the wall structure.
Abstract:
A provided is a liquid crystal display device with a high definition screen and less color mixture. On an array substrate, a pixel is formed between the adjacent video signal lines, a color filter is formed within the pixel, a flattening film is formed on the color filter, a lower layer is formed on the flattening film, and an upper layer having a slit is formed on the lower layer with an interlayer insulating film interposed therebetween; and on the array substrate, an opposite substrate is arranged with a liquid crystal layer interposed therebetween. When a distance from the top of the video signal line working as a light shielding film to the bottom of the liquid crystal layer is defined as d and a space between the centers of the video signal lines separating the pixel is defined as w, a relation of d≤0.3w is satisfied.
Abstract:
According to one embodiment, an illumination device includes a lightguide, a light-emitting layer, a first reflector, a second reflector, and a third reflector. A distance between the first reflector and the second reflector is greater at a second position farther from the light-emitting layer than at a first position closer to the light-emitting layer. A distance between the lightguide and the third reflector is greater at a fourth position farther from the first reflector than at a third position closer to the first reflector. An emission portion for allowing emission of light emitted from the light-emitting layer is formed between the second reflector and the third reflector.
Abstract:
A high-definition and high-contrast liquid crystal display device having a high aperture ratio without light leakage around a columnar spacer is provided. The liquid crystal display device of a horizontal electric field type includes a TFT substrate with a pixel electrode and a common electrode, a color filter substrate with a color filter, a columnar spacer interposed between the substrates, and a liquid crystal layer arranged between the substrates. A liquid crystal alignment film formed between the substrates is a photo-alignment film. The columnar spacer, formed on the color filter substrate or the TFT substrate, has a wall-like shape and an inclined surface extending in a direction parallel to or perpendicular to a direction in which the liquid crystal is initially aligned.
Abstract:
According to one embodiment, a display device includes an insulating substrate, a first insulating film, a second insulating film, a third insulating film, a fourth insulating film, a fifth insulating film, a sixth insulating film, a color filter layer, a semiconductor layer disposed between the second insulating film and the third insulating film, and a gate electrode disposed between the third insulating film and the fourth insulating film, wherein the first, fourth, and sixth insulating films are formed of a silicon nitride, and the second, third, and fifth insulating films are formed of a silicon oxide.
Abstract:
There is provided a high-definition liquid crystal display device that can prevent flicker due to a reduction in the pixel potential in a low-frequency drive of about 10 Hz to reduce power consumption. The pixel has a TFT formed of Poly-Si as a switching element. In the pixel, a capacitance insulating film is formed on a planar first electrode on which a comb-shaped second electrode is formed. When the film thickness of the insulating film is d and the dielectric constant at 10 Hz frequency is ∈, it is given that ∈d≧5×10−6 m at 10 Hz frequency. The capacitance insulating film does not have a hysteresis characteristic. The refractive index of the capacitance insulating film with respect to a light of a wavelength of 632.8 nm is 1.7 to 2.0.
Abstract:
A display device includes a first light shielding part provided between a filter film and a first electrode, and a second light shielding part provided on a second substrate. First and second filter films each have long sides that extend in a first direction in which a video signal line extends, and the first and the second filter films are arranged adjacent to each other in a second direction different from the first direction. The first light shielding part overlaps the video signal line in a plan view. The second light shielding part overlaps a metal electrode in the plan view.