Abstract:
An orthopedic device set, including: a plurality of intervertebral spacer elements, each spacer element having a different axial thickness from each other element, the axial thicknesses being selected to increase by an increment from one element to another; and an instrument for holding ones of the intervertebral spacer elements, the instrument comprising a shaft having a distal end, a selectively grasping subassembly for alternatively rigidly holding each spacer element at the distal end so that the spacer element cannot move relative to the instrument, and releasing the spacer element.
Abstract:
A screw and coupling element assembly for use with an orthopedic rod implantation apparatus includes a screw with a head and a shaft extending from the head, a coupling element with a seat within which the head is seatable such that the shaft protrudes from the coupling element, and a locking element mateable with the coupling element and when mated is selectively movable through a plurality of positions including unlocked and locked positions. When in the unlocked position, the locking element presents a rod-receiving channel and the head is movable in the seat such that the shaft is directable in a plurality of angles relative to the coupling element. When in the locked position, a rod disposed within the rod-receiving channel is fixed relative to the coupling element and the head is immovable in the seat such that the shaft is fixed at an angle relative to the coupling element.
Abstract:
An artificial intervertebral disc having a pair of opposing plate members for seating against opposing vertebral bone surfaces, separated by a spring mechanism. The preferred spring mechanism is at least one spirally slotted belleville washer having radially extending grooves. One plate member has a centrally located ball-shaped protrusion that is rotatably coupled in a central socket in the narrow end of the belleville washer, and the wide end of the belleville washer is held against the other plate member by a shield with rivets. Therefore, the disc assembly will not come apart under tension loads applied to the plate members, and the location of the ball joint coupling provides the disc assembly with a centroid of motion that is centrally located between the vertebral bone surfaces, both causing the disc assembly to behave similarly in these respects to a healthy natural intervertebral disc.
Abstract:
An intervertebral spacer device having a pair of opposing plates for seating against opposing vertebral bone surfaces, separated by at least one force restoring element. The preferred force restoring mechanism is a wave washer. In a first embodiment the wave washer is ring-shaped. In a second embodiment the wave washer is spiral-shaped.
Abstract:
An intervertebral spacer device includes first and second plate members, each having plate surfaces thereof, the plate members being disposed in a spaced apart relationship such that inner ones of the plate surfaces oppose one another, and external ones of the plate surfaces face in opposite directions. The device includes at least one slotted domed arch strip spring disposed between the inner surfaces of the first and second plate members for counteracting compressive load applied to the external surfaces of the plate members, one of the plate members having a ball-shaped head attached thereto and spaced from the inner surface thereof, and the at least one slotted domed arch strip spring having a central opening including a curvate volume for receiving and holding therein the ball-shaped head.
Abstract:
An artificial disc having a pair of opposing plates for seating against opposing vertebral bone surfaces, separated by a spider spring having a plurality of spring arms extending radially from a central hub. Various spring arm embodiments disclosed include spring arms that are straight, bowed, grooved, wavy, thinning, or thickening; and spring arms with parallel sides, radially outwardly diverging sides, or radially outwardly diverging and curving sides. Various spider spring embodiments disclosed include spider springs with central hubs that are solid, bored, have curvate sockets, or have semispherical protuberances. Various plate embodiments disclosed include plates having, on inwardly facing surfaces, a curvate socket, a semispherical protuberance, a circular recess, or a flat surface. The spider springs are disposable between the plates, through various disclosed couplings, so that the plates compress, rotate and angulate freely relative to one another, enabling the artificial disc to mimic a healthy natural intervertebral disc.
Abstract:
A surgical treatment for restoring a proper anatomical spacing and alignment to vertebral bones of a scoliosis patient, the treatment including determining an angular misalignment associated with at least one pair of adjacent bones, adjusting the intervertebral space between adjacent vertebral bones to restore proper spacing, and inserting a tapered spacer to restore proper anatomical misalignment of the vertebral bones.
Abstract:
An orthopedic device set, including: a plurality of intervertebral spacer elements, each spacer element having a different axial thickness from each other element, the axial thicknesses being selected to increase by an increment from one element to another; and an instrument for holding ones of the intervertebral spacer elements, the instrument comprising a shaft having a distal end, a selectively grasping subassembly for alternatively rigidly holding each spacer element at the distal end so that the spacer element cannot move relative to the instrument, and releasing the spacer element.
Abstract:
An intervertebral spacer device having a pair of opposing plates for seating against opposing vertebral bone surfaces, separated by at least one spring mechanism. A first plate of this embodiment includes a post extending upwardly from the inner surface of the plate, the post including a ball-shaped head. The post is designed to flexibly support a slotted belleville washer, which can be selectively mounted to the head such that the wider portion of the washer seats against the second plate. Compression of the assembly causes a deflection of the slotted belleville washer. The slotted belleville washer of this invention has a radially varying thickness which permits the load deflection profile to mimic that of the natural cartilage which is being replaced.
Abstract:
An intervertebral spacer device having a pair of opposing plates for seating against opposing vertebral bone surfaces, separated by at least one spring mechanism. The preferred spring mechanism is an arched strip spring. In a first embodiment there are multiple springs positioned independently about the area of the opposing plates. In a second embodiment there is a single arched strip spring modified to mount onto a ball-shaped head. The lower plate of this second embodiment includes a post extending upwardly from the inner surface of the plate, the post including a ball-shaped head. The spring and post members are flexibly coupled such that the upper and lower plates may rotate relative to one another.