Abstract:
The invention provides novel lithium-containing phosphate materials having a high proportion of lithium per formula unit of the material. Upon electrochemical interaction, such material deintercalates lithium ions, and is capable of reversibly cycling lithium ions. The invention provides a rechargeable lithium battery which comprises an electrode formed from the novel lithium-containing phosphates.
Abstract:
The subject invention discloses a novel method of providing a binary electrolyte-solvent solution in a solid battery system. A first component of this binary electrolyte solvent system is provided by a material which acts as a plasticizer in the formation of a solid polymeric matrix (separator), composite cathode and/or composite anode, and which also acts as an electrolyte solvent in the completed electrochemical cell. The second component of the binary electrolyte solvent system is an electrolyte solvent, which generally carries the electrolyte salt into the electrolytic cell precursor. The first and second components of the binary electrolyte solvent system mix within the electrolytic cell, dispersing the electrolyte salt throughout the binary electrolyte solvent system. The addition of the electrolyte salt to the electrolytic cell precursor acts to activate the cell precursor, and to form a functional electrolytic cell or battery system.
Abstract:
The invention provides a battery having an electrode active material comprising a mixed-metal sulfate compound. The mixed-metal consists of at least one alkali metal and at least one transition metal. Preferably, the sulfate compound is a polysulfate having more than one SO.sub.4 group. The invention also provides novel lithium-metal-sulfate compounds and electrodes comprising such novel compounds.
Abstract:
The present invention provides an electrochemical cell or battery which has a non-metallic negative electrode (anode). That is, no solid metal, free metal, active material is used in the cell. Rather than the conventional solid lithium metal anode, the active material of the new electrode comprises substituted carbon active material. The substituted carbon is carbonaceous material arranged in a disordered or ordered graphite structure, where atoms of carbon have been substituted in such structure by at least one other element. The invention also provides carbonaceous materials which are non-graphitic and considered amorphous, non-crystalline, highly disordered, which also have substituted therein elements other than carbon. The invention also provides a process for making such substituted carbons and for preparing an anode containing the substituted carbon.
Abstract:
A battery which comprises a first electrode and a counter electrode which forms an electrochemical couple with the first electrode, and an electrolyte. The first electrode comprises graphite particles and the electrolyte comprises a solvent mixture and a solute. The solvent mixture comprises vinylene carbonate (VC) or substituted derivatives thereof and propylene carbonate (PC).
Abstract:
Non-aqueous solid electrochemical cells with improved performance can be fabricated by employing intercalation based carbon anodes comprising a mixture of carbon particles having different morphologies and selected from platelet-type, microbead-type and/or fiber-type structures. The anodes exhibit good cohesion and adhesion characteristics. When employed in an electrochemical cell, the anode can attain a specific electrode capacity of at least 300 mAh/g. The electrochemical cell has a cycle life of greater than 1000 cycles, and has a first cycle capacity loss of only about 5-15%.
Abstract:
The inventions provides a battery which comprises a first electrode, a counter electrode which forms an electrochemical couple with said first electrode, and an electrolyte. The first electrode comprises graphite particles having an interlayer distance spacing of 002 planes (d.sub.002) as determined by x-ray diffraction of 0.330 to 0.340 nanometers (nm), a crystallite size in the direction of c-axis (L.sub.c) being greater than about 90 nanometers (nm) and less than about 1000 nanometers, and at least 90 percent by weight of said graphite particles having a size less than about 24 microns (.mu.m). The electrolyte comprises a solvent mixture and a solute; the solvent mixture comprises (i) ethylene carbonate (EC), and (ii) a solvent selected from the group consisting of propylene carbonate (PC), butylene carbonate (BC), and mixtures thereof with the ethylene carbonate being present in an amount by weight which is at least as great as the amount of any other solvent. Optionally, the solvent mixture further comprises one or more other organic solvents selected from the group consisting of methyl ethyl carbonate (MEC), diethyl carbonate (DEC), dipropyl carbonate (DPC), dimethyl carbonate (DMC), and mixtures thereof.
Abstract:
A hinge assembly suppressing periodic motions and abrasive wear that supports an axial load and integrated a releasable hinge pin with retractable latch pins. The connector arms for the hinge assembly may include bearings, smooth outer surfaces, and tight fittings to help suppress the periodic motions and abrasive wear. Adjustable mounting apertures reduce stress on the hinge system. A hinge aperture for each member enables an axial load arm, such as thrust bearings, to pass through for reducing periodic movements during pivotal operation. A lock arm can also pass through the hinge apertures. The lock arm uses a locking pin to fasten the members together. A smooth outer surface inhibits abrasive wear and creates a smooth pivoting motion. Non-circular mounting apertures may enable adjustable mounting for reducing stress on the system.
Abstract:
A compound of formula Ab′MgaMbXy or Ab′MgaMb(XOz)y for use as electrode material in a magnesium battery is disclosed, wherein A, M, X, b′, a, b, y, and z are defined herein.
Abstract:
The present invention provides a convenient process for making lithium sulfide involving heating one or more lithium-containing compounds and sulphur, wherein the heating step is performed at a temperature of 600 to 1500° C.