Abstract:
A spray dried non-hydrogen bonded (NHB) nano-fibrillated cellulose (NFC) composition and methods for preparing such composition are disclosed. The spray dried NFC with a NHB effect results in low packing density.
Abstract:
A superhydrophobic surface includes a substrate treated with a composition including a hydrophobic matrix component free of fluorine; filler particles, wherein the filler particles are plant-based elements of a size ranging from 100 nm to 100 μm; and water, wherein the hydrophobic component is in an aqueous dispersion, and wherein the surface exhibits a water contact angle of 150° or greater. Also, a disposable absorbent article includes a substrate having a surface, the surface including a composition including a hydrophobic matrix component free of fluorine; filler particles, wherein the filler particles are plant-based elements of a size ranging from 100 nm to 100 μm, wherein the plant-based elements include micro- and nano-fibrillated cellulose; and water, wherein the hydrophobic component is in an aqueous dispersion, and wherein the surface exhibits a water contact angle of 150° or greater.
Abstract:
A non-fluorinated composition configured to create a superhydrophobic surface includes a hydrophobic matrix component free of fluorine; filler particles, wherein the filler particles are plant-based elements of a size ranging from 100 nm to 100 μm; and water, wherein the hydrophobic matrix component is in an aqueous dispersion. Also, a non-fluorinated composition configured to create a superhydrophobic surface includes a hydrophobic matrix component free of fluorine, wherein the hydrophobic matrix component includes a polyolefin, a natural wax, or a synthetic wax; filler particles, wherein the filler particles are plant-based elements of a size ranging from 100 nm to 100 μm; an emulsifier; and water, wherein the hydrophobic component is in an aqueous dispersion.
Abstract:
An absorbent composite foam is provided having a density below 0.04 g/cc and low wet collapse comprising (i) between about 5 to about 40% by wt. fluid resistant fibers; (ii) between about 30 to about 80% by wt. cellulosic fibers; (iii) between about 5 to about 35% by wt. binder; and (iv) a foaming surfactant. The combination of ultra-low density and wet stability is achieved, despite a high proportion of cellulosic fibers, by having both hydrogen bonding between cellulosic fibers as well as inter-fiber bonds formed by the binder.
Abstract:
It has now been discovered that the sheet bulk of a tissue web may be increased, with little or no degradation in tensile strength, by forming the web with at least a portion of cellulosic fiber that has been reacted with a water soluble cellulose reactive agent such as a cyanuric halide or a vinyl sulfone and then reacting the fiber with monochloroacetic acid, or salts thereof, in the presence of a caustic.
Abstract:
The present invention provides a modified cellulosic fiber having reduced hydrogen bonding capabilities. The modified fiber formed in accordance with the present invention may be useful in the production of tissue products having improved bulk and softness. More importantly, the modified fiber is adaptable to current tissue making processes and may be incorporated into a tissue product to improve bulk and softness without an unsatisfactory reduction in tensile.
Abstract:
A method is presented for forming a collapsed foam film-like structure, the method including positioning a composition applicator adjacent to a hot non-permeable dryer surface, producing a first frothed dispersion or frothed solution from a first dispersion or solution, applying the first frothed dispersion or frothed solution to the dryer surface, allowing the first frothed dispersion or frothed solution to convert to a collapsed foam film-like structure, and scraping the collapsed foam film-like structure from the dryer surface. The method can further include producing a second dispersion or solution, blending the first dispersion or solution and the second dispersion or solution, frothing the blended dispersion or solution, applying the blended frothed dispersion or frothed solution to the dryer surface, and allowing the frothed dispersion or frothed solution to convert to a collapsed foam film-like structure.
Abstract:
A superhydrophobic surface includes a substrate treated with a non-fluorinated composition, the composition including a hydrophobic component free of fluorine; a filler particle; and water, wherein the composition is at a pH greater than 7, and wherein the hydrophobic component is in an aqueous dispersion. The superhydrophobic surface alternatively includes a substrate treated with a non-fluorinated composition, the composition including a hydrophobic polymer free of fluorine; an exfoliated graphite filler particle including acid functional groups; water; and a stabilizing compound, wherein the composition is at a pH greater than 7, and wherein the hydrophobic polymer is in an aqueous dispersion.
Abstract:
The present invention provides a modified cellulosic fiber having reduced hydrogen bonding capabilities. The modified fiber formed in accordance with the present invention may be useful in the production of tissue products having improved bulk and softness. More importantly, the modified fiber is adaptable to current tissue making processes and may be incorporated into a tissue product to improve bulk and softness without an unsatisfactory reduction in tensile.
Abstract:
The present invention provides a modified cellulosic fiber having reduced hydrogen bonding capabilities. The modified fiber formed in accordance with the present invention may be useful in the production of tissue products having improved bulk and softness. More importantly, the modified fiber is adaptable to current tissue making processes and may be incorporated into a tissue product to improve bulk and softness without an unsatisfactory reduction in tensile.