摘要:
An immersion lithography apparatus and a cleanup method used for the immersion lithography apparatus in which an immersion liquid is supplied from a liquid supply member to a gap between an optical element of a projection optics and a workpiece during an immersion lithography process. A surface of an object, which is different from the workpiece, is provided such that the surface of the object and the optical element are opposite to each other. During a cleanup process, a cleaning liquid is supplied from the liquid supply member onto the surface of the object.
摘要:
An immersion lithography apparatus and cleanup method used for the immersion lithography apparatus in which an immersion liquid is supplied to a gap between an optical element of a projection optics and a workpiece during an immersion lithography process. A surface of an object, which is different from the workpiece, is provided below the optical element, a supply port and a recovery port. During a cleanup process, a cleaning liquid is supplied onto the object such that the cleaning liquid covers only a portion of the surface of the object.
摘要:
An immersion lithography apparatus includes an optical member, a gap defined between the optical member and a surface disposed opposite the optical member being filled with an immersion liquid, and a fluid control device including a gas outlet through which a gas is supplied to prevent the immersion liquid from entering a surround area external to an exposure area. A flow velocity of the gas supplied from the gas outlet depends on a contact angle between the immersion liquid and the surface.
摘要:
An apparatus for supporting an object is disclosed. The apparatus includes an air bearing coupled to an air bellows. When used in a vacuum environment, the apparatus preferably includes an air bearing housing with vacuum to remove the pressurized fluid used in the air bearing.
摘要:
A lithographic projection apparatus that is arranged to project a pattern from a patterning device onto a substrate using a projection system has a liquid supply system arranged to supply a liquid to a space between the projection system and the substrate. The apparatus also includes a liquid removal system having a conduit having an open end adjacent a volume in which liquid will be present, a porous member between the end of the conduit and the volume, and a suction device arranged to create a pressure differential across the porous member.
摘要:
An environmental system controls an environment in a gap between an optical assembly and a device and includes a fluid barrier, an immersion fluid system, and a transport region. The fluid barrier is positioned near the device and maintains the transport region near the gap. The immersion fluid system delivers an immersion fluid that fills the gap. The transport region transports at least a portion of the immersion fluid that is near the fluid barrier and the device away from the device. The immersion fluid system can include a fluid removal system that is in fluid communication with the transport region. The transport region can be made of a porous material.
摘要:
Methods and apparatus for collecting heat within a precision stage system substantially without introducing significant disturbance forces to the system are disclosed. According to one aspect of the present invention, a method for substantially removing heat from a first location within an overall stage apparatus includes providing the heat from the first location to a heat transferring mechanism that carries the heat away from the first location. The heat is transferred from the heat transferring mechanism to a second location associated within the stage apparatus. The second location includes a material that is arranged to store the transferred heat. The method also includes storing the heat substantially within the material. In one embodiment, the heat is generated at the first location.
摘要:
Vibration-attenuation devices and methods are disclosed that utilize a bellows situated between a first and second mass and pressurized with a fluid to an internal fluid pressure substantially equal to a zero-stiffness pressure such that the bellows exhibits a substantially zero lateral stiffness. The devices may include various components configured to measure, regulate, and control the internal pressure of the bellows in order to maintain a desired pressure. The devices may include an active support, such as a secondary bellows or linear actuator, that provides a secondary support force. The active support may be connected to various components configured to measure and control the secondary support force. The vibration-attenuation devices disclosed may be used in a lithography exposure apparatus to attenuate vibrations between: (1) a support frame and a support surface; (2) a base and a stage-supporting platform; and (3) a supporting stage and a wafer stage.
摘要:
Methods and apparatus for adjusting a push point of an actuator such that the push point more closely corresponds to a center-of-gravity of a stage being driven by the actuator are disclosed. According to one aspect of the present invention, a method for scanning a stage device which includes a stage, as well as an actuator which has a first coil and a second coil, includes driving the stage using the actuator and determining when driving the stage using the actuator includes driving the stage through a first location associated with the stage. The actuator is arranged to drive the stage through a push point associated with the first coil and the second coil. The method also includes altering the push point when it is determined that driving the stage using the actuator does not result in the stage being driven through the first location associated with the stage.
摘要:
A stage assembly (10) for moving and positioning a device (26) is provided herein. The stage assembly (10) includes a stage base (12), a stage (14), a stage mover assembly (16), and a reaction assembly (18). The stage mover assembly (16) moves the stage (14) along an X axis and along a Y axis relative to the stage base (12). The reaction assembly (18) is coupled to the stage mover assembly (16). Uniquely, the reaction assembly (18) counteracts and reduces the reaction forces created by the stage mover assembly (16) in two degrees of freedom that are transferred to a reaction base (102). With this design, stage mover assembly (16) has less influence upon the position of the stage base (12). These features allow for more accurate positioning of the device (26) by the stage assembly (10) and better performance of the stage assembly (10).