摘要:
A near-field optical probe has a planar substrate formed with a through-hole and a phase shifter layer translucent to light having a wavelength of illumination light used to illuminate the substrate for producing near-field light. The phase shifter layer is effective to cause a shift of phase in the illumination light by 180 degrees and is provided on the substrate so as to cover one opening of the through-hole to form a microscopic aperture for producing near-field light.
摘要:
An information recording and reproducing apparatus for at least one of recording and reproducing information on a recording medium utilizing near-field light has a suspension arm and a near-field light head mounted on the suspension arm. The near-field light head has a minute aperture, an optical waveguide for propagating light from a light source, and a reflection film for reflecting the light propagated by the optical waveguide and for irradiating the reflected light to the minute aperture to generate near-field light at the minute aperture for interaction with a recording medium. A light guiding structure guides light from the light source to the optical waveguide of the near-field light head.
摘要:
There is provided an information recording medium and an information reproducing apparatus capable of carrying out information reproduction and tracking control by utilizing near-field light. A data bit 12 of a convex having a section orthogonal to a tracking direction in a triangular shape is formed on an information recording medium 3 as an information unit, by scattering near-field light formed at a reproducing probe 1 at inclined faces of the data bit 12 with directionalities, fluxes of reflected and scattered light thereby are detected by reproduced light detectors 6 and 7 arranged symmetrically in a left and right direction relative to a central axis of the reproducing probe 1 along the tracking direction, a differential signal between the detected signals is outputted by a difference circuit 20 and an actuator 22 is driven by the differential signal via a tracking signal forming circuit 21 and a position of the reproducing probe 1 is controlled to carry out the tracking control.
摘要:
A near-field optical probe with a resolving power exceeding a diffraction limit of light is provided utilizing near-near-field light. A near-field optical probe is formed by a core and a shading film. The core has a tip surface spotted with inwardly depressed points with respect to the surface. This provides within the tip surface a light intensity distribution in a distributed form instead of a conventional rectangle function. Its Fourier expansion is increased in short-wavelength lattice constant component. Utilizing this component, a near-field optical probe is realized having a resolving power exceeding a diffraction limit of light.
摘要:
There is disclosed an optical switch consisting of a support substrate, a movable raw optical fiber, a fixed raw optical fiber, a magnetic member for the movable raw optical fiber, and a leaf spring. The fibers are disposed in a V-shaped groove formed in the substrate. The magnetic member is actuated by an electromagnet disposed above the substrate. The leaf spring pushes the movable raw optical fiber into the V-shaped groove. The structure of the switch is relatively simple. Since the movable raw optical fiber is pushed using the leaf spring, the switch is less affected by the assembly accuracy than conventional. It is easy to make adjustments during assembly. Consequently, high-performance, low-cost, optical switch that can be mass-produced can be offered.
摘要:
The present invention has an object to obtain an optical waveguide probe which is formed in a hook form to illuminate and detect light by a manufacture using a silicon process. This optical waveguide probe is formed in a hook form and structured by an optical waveguide 1 sharpened at a probe needle portion 5 and formed of dielectric and a substrate 2 supporting this optical waveguide 1. This optical waveguide 1 is formed overlying the substrate 2. The optical waveguide 1 is structured by a core 8 to transmit light and a cladding 9 smaller in refractive index than the core 8.
摘要:
A near-field optical head has a tip end having an edge portion defined by two intersecting planes. Information recorded on a recording medium is reproduced in accordance with an intensity of scattered light of an evanescent field generated when the recording medium is illuminated with light and the tip end of the optical head is brought proximate the recording medium at an interval equal to or smaller than a wavelength of light therebetween.
摘要:
In an information recording apparatus for recording information onto a recording medium by utilizing a technology in a near-field microscope, the information recording apparatus carries out recording with reliability and density. An optical probe (1) or micro-cantilever (12) utilized in a near-field microscope is used as a recording probe (26). The recording probe (26) at its tip is heated by laser light (28) illumination or heating by an electric heating element to radiate microscopic-region thermal energy through the tip to a recording medium (3). This makes it possible to record microscopically information onto the recording medium (3) that varies in physical properties due to heating. Furthermore, thermal energy is provided to a recording position through an auxiliary heat radiating means thereby enabling recording more positively.
摘要:
The present invention has an object, in a near-field optical probe having a microscopic aperture to generate and/or scatter a near field, to obtain a near-field optical probe easy to be made in an array which increases the intensity of a near field to be generated and/or scattered and is adapted for use as an optical memory head. This near-field optical probe is arranged with a planar lens having microscopic lens on a flat surface substrate having an inverted conical or pyramidal hole formed therethrough such that its apex is made as the microscopic aperture, wherein a light source is further arranged thereon to introduce light to the planar lens. Because the arrangement is made such that the planar lens has a focal point positioned at the microscopic aperture, the light given by the light source can be efficiently collected to the microscopic aperture. Also, the above structure can be arrayed and mass produced using a silicon process, thus being adapted for use as an optical memory head.
摘要:
A near-field optical probe has a flat support member having opposed flat surfaces, and a tapered through-hole extends through the support member and terminates at one of the flat surfaces in a narrow aperture. A light collecting layer having a plurality of reflective surfaces is disposed on the support member for collecting and focusing light passing through the narrow aperture. An optical detector disposed above the light collecting layer detects light passing through the light collecting layer.