HIGH FUNCTIONALIZATION DENSITY GRAPHENE
    52.
    发明申请

    公开(公告)号:US20190135637A1

    公开(公告)日:2019-05-09

    申请号:US16182371

    申请日:2018-11-06

    Abstract: Carbon-based materials, and associated methods and articles, are generally provided. In some embodiments, a carbon-based material comprises a carbon-based portion and a functional group bonded to the carbon-based portion. The functional group may be capable of forming a reversible covalent bond with a species. Carbon may make up greater than or equal to 30 wt % of the carbon-based portion. The carbon-based portion may comprise graphene, and a ratio of a total number of functional groups in a plurality of functional groups bonded to the graphene to a total number of carbon atoms in the plurality of carbon atoms of the graphene may be greater than or equal to 1:50. The carbon-based portion may comprise graphene, and greater than or equal to 70% of the graphene sheets may be spaced apart from their nearest neighbors by a distance of greater than or equal to 10 Å. A method may comprise applying a voltage to a carbon-based material. The voltage may be applied in the presence of a combination of solvents comprising a dissolved species. The combination of solvents may comprise a solvent stable at voltages of greater than or equal to −3.15 V and less than or equal to −2.2 V and/or may comprise a solvent with a surface tension within 25% of a surface tension of the carbon-based material. The voltage may be a decreasing voltage that decreases at a rate of greater than or equal to 2 μV/s and less than or equal to 40 μV/s and has a value of greater than or equal to −2.2 V and less than or equal to −3.15 V at at least one point in time.

    TUNABLE MICROLENSES AND RELATED METHODS
    55.
    发明申请

    公开(公告)号:US20180246314A1

    公开(公告)日:2018-08-30

    申请号:US15887863

    申请日:2018-02-02

    CPC classification number: G02B26/004 G02B3/14

    Abstract: Embodiments described herein may be useful for optofluidic devices. For example, optofluidic devices using dynamic fluid lens materials represent an ideal platform to create versatile, reconfigurable, refractive optical components. For example, the articles described herein may be useful as fluidic tunable compound micro-lenses. Such compound micro-lenses may be composed of two or more components (e.g., two or more inner phases) that form stable bi-phase emulsion droplets in outer phases (e.g., aqueous media). Advantageously, the refractive index contrast at each material interface and/or the curvature of each interface may contribute to the focusing power of a refractive optical element, allowing for a wide tuning range of the emulsion lenses' focal length, and thereby enabling switching between converging or diverging lens geometries. Advantageously, the radius of curvature between two or more components and/or the average focal length of transmitted or reflected light through the droplets may be controlled by exposing the plurality of droplets to a stimulus.

Patent Agency Ranking