Abstract:
A thermocompression bonding (TCB) apparatus can include a wall having a height measured in a first direction and configured to be positioned between a first pressing surface and a second pressing surface of a semiconductor bonding apparatus. The apparatus can include a cavity at least partially surrounded by the wall, the cavity sized to receive a semiconductor substrate and a stack of semiconductor dies positioned between the semiconductor substrate and the first pressing surface, the stack of semiconductor dies and semiconductor substrate having a combined unpressed stack height as measured in the first direction. In some embodiments, the unpressed stack height is greater than the height of the wall, and the wall is configured to be contacted by the first pressing surface to limit movement of the first pressing surface toward the second pressing surface during a semiconductor bonding process.
Abstract:
A silicon interposer that includes an array, or pattern, of conductive paths positioned within a silicon substrate with a plurality of pins on the exterior of the substrate. Each of the pins is connected to a portion of the array of conductive paths. The array of conductive paths is configurable to provide a first electrical flow path through the substrate via a portion of the array of conductive paths or a second electrical flow path through the substrate. The electrical flow path through the substrate may be customizable for testing various die or chip layout designs. The electrical flow path through the substrate may be customizable by laser ablation of portions of the conductive paths, breaking of fuses along the conductive paths, and/or the actuation of logic gates connected to the conductive paths.
Abstract:
A semiconductor device includes a first die; a first metal enclosure directly contacting and vertically extending below the first die, wherein the first metal enclosure peripherally encircles a first enclosed space; a second die directly contacting the first metal enclosure opposite the first die; a second metal enclosure directly contacting and vertically extending below the second die, wherein the second metal enclosure peripherally encircles a second enclosed space; and an enclosure connection mechanism directly contacting the first metal enclosure and the second metal enclosure for electrically coupling the first metal enclosure and the second metal enclosure.
Abstract:
A semiconductor device includes a first die; a second die attached over the first die; a first metal enclosure and a second metal enclosure both directly contacting and vertically extending between the first die and the second die, wherein the first metal enclosure peripherally encircles a set of one or more internal interconnects and the second metal enclosure peripherally encircles the first metal enclosure without directly contacting the first metal enclosure; a first enclosure connector electrically connecting the first metal enclosure to a first voltage level; a second enclosure connector electrically connecting the second metal enclosure to a second voltage level; and wherein the first metal enclosure, the second metal enclosure, the first enclosure connector, and the second enclosure connector are configured to provide an enclosure capacitance.
Abstract:
A semiconductor device includes a first die; a second die attached over the first die; a first metal enclosure and a second metal enclosure both directly contacting and vertically extending between the first die and the second die, wherein the first metal enclosure peripherally encircles a set of one or more internal interconnects and the second metal enclosure peripherally encircles the first metal enclosure without directly contacting the first metal enclosure; a first enclosure connector electrically connecting the first metal enclosure to a first voltage level; a second enclosure connector electrically connecting the second metal enclosure to a second voltage level; and wherein the first metal enclosure, the second metal enclosure, the first enclosure connector, and the second enclosure connector are configured to provide an enclosure capacitance.
Abstract:
A semiconductor device includes a first die; a first metal enclosure directly contacting and vertically extending below the first die, wherein the first metal enclosure peripherally encircles a first enclosed space; a second die directly contacting the first metal enclosure opposite the first die; a second metal enclosure directly contacting and vertically extending below the second die, wherein the second metal enclosure peripherally encircles a second enclosed space; and an enclosure connection mechanism directly contacting the first metal enclosure and the second metal enclosure for electrically coupling the first metal enclosure and the second metal enclosure.
Abstract:
Wafer-level methods of processing semiconductor devices may involve forming grooves partially through a molding material, the molding material located in streets and at least surrounding stacks of semiconductor dice located on a wafer. Wafer-level methods of preparing semiconductor devices may involve attaching a wafer to a carrier substrate and forming stacks of laterally spaced semiconductor dice on die locations of the wafer. Molding material may be disposed over the die stacks on a surface of the wafer to at least surround the stacks of semiconductor dice with the molding material. Grooves may be formed in the molding material by partially cutting through the molding material between at least some of the stacks of semiconductor dice along streets between the die stacks. The resulting wafer-level assembly may then, when exposed to elevated temperatures during, for example, debonding the wafer from a carrier, exhibit reduced propensity for warping.
Abstract:
Wafer-level methods of processing semiconductor devices may involve forming grooves partially through a molding material, the molding material located in streets and at least surrounding stacks of semiconductor dice located on a wafer. Wafer-level methods of preparing semiconductor devices may involve attaching a wafer to a carrier substrate and forming stacks of laterally spaced semiconductor dice on die locations of the wafer. Molding material may be disposed over the die stacks on a surface of the wafer to at least surround the stacks of semiconductor dice with the molding material. Grooves may be formed in the molding material by partially cutting through the molding material between at least some of the stacks of semiconductor dice along streets between the die stacks. The resulting wafer-level assembly may then, when exposed to elevated temperatures during, for example, debonding the wafer from a carrier, exhibit reduced propensity for warping.
Abstract:
Wafer-level methods of processing semiconductor devices may involve forming grooves partially through a molding material, the molding material located in streets and at least surrounding stacks of semiconductor dice located on a wafer. Wafer-level methods of preparing semiconductor devices may involve attaching a wafer to a carrier substrate and forming stacks of laterally spaced semiconductor dice on die locations of the wafer. Molding material may be disposed over the die stacks on a surface of the wafer to at least surround the stacks of semiconductor dice with the molding material. Grooves may be formed in the molding material by partially cutting through the molding material between at least some of the stacks of semiconductor dice along streets between the die stacks. The resulting wafer-level assembly may then, when exposed to elevated temperatures during, for example, debonding the wafer from a carrier, exhibit reduced propensity for warping.
Abstract:
A semiconductor device assembly is provided. The semiconductor device assembly includes a logic die, a first plurality of stacked memory dies electrically coupled with the logic die, and a second plurality of stacked memory dies mounted on and electrically coupled with the first plurality of stacked memory dies. A first dielectric material is disposed around the first plurality of stacked memory dies. A second dielectric material is disposed at the first dielectric material and surrounding the second plurality of stacked memory dies. A third dielectric material is disposed between the first plurality of stacked memory dies and the second plurality of stacked memory dies and between the first dielectric material and the second dielectric material.