Abstract:
Systems and methods for managing network resources, including managing a generated virtualized data plane network using a central controller. Virtual machine (VM) resources are assigned to two or more different network functions at a local data center. Traffic is dynamically optimized based on at least one of aggregate traffic demands and quality of service (QoS) goals, and resource allocations and inter-data center (DC) bandwidth resources are determined for VMs for a plurality of services. VMs for each middlebox function and a routing plane for each service are configured based on the determined resource allocation, and flows are routed based on the resource allocation and one or more configured network paths using an overlay-routing framework.
Abstract:
A system and method for network-wide broadcasting, including identifying interference dependencies between base stations (eNBs) to generate one or more single frequency network (SFN) clusters for one or more broadcast sessions. The generating of SFN clusters includes performing a controlled decrease in transmit diversity gain for each of the sessions by progressively creating smaller SFN clusters, iteratively creating the smaller SFN clusters until a target modulation and coding scheme (MCS) threshold is met to generate a plurality of SFN clusters, and selecting an SFN cluster with a maximum common MCS for all SFN clusters in a set. Resource block (RB) allocation is integrated with the generating of the SFN clusters to determine maximum system utility, and the system utility considers the sum of the utilities of broadcast and unicast flows. Network-wide broadcasting is controlled based on the determined maximum system utility.
Abstract:
Methods and systems for beam forming include measuring channel state information for a set of different codebook entries. An angle of arrival (AoA) distribution is determined with a processor using compressive testing based on the measured channel state information. A set of phase shift values is determined based on the determined AoA to perform phased array beamforming.
Abstract:
A system for traffic management between a WiFi network and an LTE network that includes a network interface assignment module for determining from an operator side of the WiFi network and the LTE network a set of WiFi Access Points (APs) and LTE base stations for each user that provides a least a highest quality of experience for each of the users using input strength for all users to potential WiFi access points and LTE base stations. The system may further include an interface switching service (ISS) module that includes a control logic and a network HTTP proxy for delivering network switching instructions to devices of users. The control logic receiving instructions from the NIA module and sending signal to the devices of the users to switch from WIFI and LTE networks through the LTE network based upon signal strength of the users.
Abstract:
Methods and systems for simultaneous determination of channel resource allocations and beam vectors for uplink frames are disclosed. One method includes receiving batch information from client devices indicating amounts of data to be transmitted on the uplink by the client devices. Further, signal quality can be measured on channel resources for each of the client devices and for each of a plurality of beam vectors. Additionally, rate information for the channel resources for each of the client devices is determined based on signal quality measurements. Moreover, the method includes computing, based on the batch information and the rate information, utilities for allocations of the channel resources to the client devices and for the beam vectors for at least one uplink frame and selecting, based on the utilities, at least one of the beam vectors and at least one of the allocations for transmission of the data on the uplink frame(s).
Abstract:
Methods and systems for determining a device position include determining a first position estimate using radio-based range information. A second position estimate is determined using visual odometry information. The first position estimate and the second position estimate are fused based on radio environmental conditions and visual environmental conditions to determine a final position estimate. Resources are deployed based on the final position estimate.
Abstract:
Systems and methods implementing a multi-unmanned aerial vehicle (UAV) wireless communication network are provided. The system includes application UAVs that wirelessly provide applications. The system includes relay UAVs that connect the application UAVs to a ground station. The ground station connects to a wireless backhaul network. Processor devices determine mobility for the application UAVs based on application-specific objectives. The processor devices also determine mobility for the relay UAVs based on forming and maintaining the wireless backhaul network.
Abstract:
Systems and methods for automatically constructing a 3-dimensional (3D) model of a feature using a drone. The method includes generating a reconnaissance flight path that minimizes battery usage by the drone, and conducting a discovery flight that uses the reconnaissance flight path. The method further includes transmitting reconnaissance laser sensor data from the drone to a processing system for target identification, and selecting a target feature for 3D model construction based on the reconnaissance laser sensor data. The method further includes scanning the target feature using a laser sensor, transmitting laser sensor data for the target feature having a minimum point density from the drone to the processing system for 3D model construction, and constructing the 3D model from the minimum point density laser sensor data.
Abstract:
A method for product tagging is presented including emitting, by at least one RF backscatter transmitter, a dual-tone Radio Frequency (RF) signal embedded within a standardized RF signal on a frequency channel, reflecting and frequency shifting, by a passive RF backscatter tag associated with a product, the dual-tone RF signal to a different frequency channel, and reading, by at least one RF backscatter receiver, the product on the different frequency channel by detecting a distributed ambient backscatter signal generated by a reflection and frequency shifting of the dual-tone RF signal by the passive RF backscatter tag.
Abstract:
A system is provided for speculative scheduling that includes a base station having a processor. The processor computes an overall schedule for a set of clients. The overall schedule is formed from a set of speculative schedules, is configured to maximize unlicensed spectrum usage, and is computed by (a) determining a speculative schedule for each resource block from a set of resource blocks in a given sub-frame based on statistics determined for the clients individually and jointly, and (b) selecting, for formation into the overall schedule, (i) a particular resource block and (ii) the speculative schedule for the particular resource block, that yield the maximum incremental utility relative to already determined speculative schedules for other resource blocks in the set, based on criteria including uplink access statistics. The processor executes the overall schedule responsive to a completion of the speculative schedule determination for each resource block in the given sub-frame.