摘要:
The illustrated and described embodiments describe techniques for capturing data that describes 3-dimensional (3-D) aspects of a face, transforming facial motion from one individual to another in a realistic manner, and modeling skin reflectance.
摘要:
A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.
摘要:
A method for mapping a digitized image of a face to a wireframe is provided. The wireframe is composed of a plurality of nodes connected by lines. The method includes the steps of detecting a plurality of facial features from the plurality of pixels of a reference facial image. Corresponding facial landmark nodes in the wireframe topology are determined. A transform between the facial features and the landmark nodes is computed to map the wireframe topology to reference facial image. The reference facial image and a target facial image are cropped using a bounding box. The cropped reference facial image is registered with the cropped target facial image to determine a displacement field. The displacement field is applied to the mapped wireframe topology for the reference facial image to map the target facial image to the wireframe topology.
摘要:
Described is a technology by which an image such as a stitched panorama is automatically cropped based upon predicted quality data with respect to filling missing pixels. The image may be completed, including by completing only those missing pixels that remain after cropping. Predicting quality data may be based on using restricted search spaces corresponding to the missing pixels. The crop is computed based upon the quality data, in which the crop is biased towards including original pixels and excluding predicted low quality pixels. Missing pixels are completed by using restricted search spaces to find replacement values for the missing pixels, and may use histogram matching for texture synthesis.
摘要:
A method described herein includes acts of receiving a sequence of images of a scene and receiving an indication of a reference image in the sequence of images. The method further includes an act of automatically assigning one or more weights independently to each pixel in each image in the sequence of images of the scene. Additionally, the method includes an act of automatically generating a composite image based at least in part upon the one or more weights assigned to each pixel in each image in the sequence of images of the scene.
摘要:
A method is disclosed for stitching together first and second sets of images from three or more image sensors. The first set of images are combined into a composite left view of the panorama, and the second set of images are combined into a composite right view of the panorama. When properly stitched together, the left and right views may be presented as a stereoscopic view of the panorama. A stitching algorithm is applied which removes any disparity due to the parallax in the combined left images and in the combined right images.
摘要:
An image enhancement system may match images to a matrix having various enhancements of images for groups of users. The matrix may define image enhancement settings for the particular images and groups of users, and the matching may apply enhancements to a new image that closely matches a user's preferences. After the matrix is initially populated, new users and new images may be added to increase the matrix's accuracy. The image enhancement system may be deployed as a cloud service, where images may be enhanced as a standalone application or as part of a social network or image sharing website. In some embodiments, the image enhancement system may be deployed on a personal computer or as a component of an image capture device.
摘要:
A method is disclosed for stitching together first and second sets of images from three or more image sensors. The first set of images are combined into a composite left view of the panorama, and the second set of images are combined into a composite right view of the panorama. When properly stitched together, the left and right views may be presented as a stereoscopic view of the panorama. A stitching algorithm is applied which removes any disparity due to the parallax in the combined left images and in the combined right images.
摘要:
Systems and methods are disclosed for generating panoramic stereoscopic images. The system includes an assembly of three or more catadioptric image sensors affixed to each other in a chassis. Each image sensor generates a catadioptric image of a panorama, which may for example be a 360° view of a scene. The software components process the catadioptric image to a 3D stereoscopic view of a panorama.
摘要:
A process for compressing and decompressing non-keyframes in sequential sets of contemporaneous video frames making up multiple video streams where the video frames in a set depict substantially the same scene from different viewpoints. Each set of contemporaneous video frames has a plurality frames designated as keyframes with the remaining being non-keyframes. In one embodiment, the non-keyframes are compressed using a multi-directional spatial prediction technique. In another embodiment, the non-keyframes of each set of contemporaneous video frames are compressed using a combined chaining and spatial prediction compression technique. The spatial prediction compression technique employed can be a single direction technique where just one reference frame, and so one chain, is used to predict each non-keyframe, or it can be a multi-directional technique where two or more reference frames, and so chains, are used to predict each non-keyframe.