Abstract:
An eta phase composition in powder form, prepared in the absence of sulfur or sulfur bearing compounds, having a surface area greater than about 2m.sup.2 /g and consisting of X.sub.6 Y.sub.6 Z.sub.a wherein X is at least one element selected from the group consiting of Mo and W, Y is at least one element selected from the group consisting of Fe, Co. Ni, Mo and W, Z is at least one element selected from the group consisting of C, N and combinations thereof such that when Z is N, a is greater than or equal to 1 but less than or equal to 2 and when Z is C, a is greater than 1 but less than or equal to 2 except when Z is C and Y is Fe, then a is greater than or equal to 1 but less than or equal to 2. The eta phase may be a carbide, nitride or carbonitride. A method for producing the eta-phase composition includes providing a precursor compound including at least two eta-phase forming metals, and a ligand containing carbon, nitrogen or combinations thereof. The precursor compound is thermally decomposed in a nonoxidizing atmosphere, free of sulfur or sulfur bearing compounds, and reacts with carbon or nitrogen derived from the decomposition of the ligand with the metals to form the eta-phase. The eta phase forming metals are at lest two of the metals tungsten, molybdenum, nickel, cobalt and iron. These eta-phase composition may be used for producing or converting hydrocarbons or alcohols. This includes hydrogenation of CO (to produce at least one hydrocarbon or at least one alcohol and hydrogenation of unsaturated hydrocarbons, aromatic hydrocarbons and olefinic hydrocarbons), isomerization and dehydrogenation.
Abstract:
The present invention is based on the discovery that certain transition metal containing complexes thermally decompose to form solids containing the transition metal, sulfur and carbon and that these transition metal, sulfur and carbon containing solids are particularly suitable as catalysts for hydrodesulfurization, hydrodenitrogenation and aromatics hydrogenation. The transition metal complexes that are thermally decomposed to novel catalysts are complexes of the type represented by the general formula ML.sup.n 3, wherein M is selected from Mo, W, Re and mixtures thereof, L is a dithiolene or aminobenzenethiolate ligand, and n represents the total charge of the metal complexes, and is 0, -1, or -2.
Abstract:
The present invention is based on the discovery that certain transition metal containing complexes thermally decompose to form solids containing the transmission metal, sulfur and carbon and that these transition metal, sulfur and carbon containing solids are particularly suitable as catalysts for hydrodesulfurization, hydrodenitrogenation and aromatics hydrogenation. The transition metal complexes that are thermally decomposed to novel catalysts are complexes of the type represented by the general formula ML.sup.n.sbsp.3, wherein M is selected from Mo, W, Re and mixtures thereof, L is a dithiolene or aminobenzenethiolate ligand, and n represents the total charge of the metal complexes, and is 0, -1, or -2.
Abstract:
Catalysts comprising a carbon-containing sulfide of molybdenum or tungsten are prepared by contacting, in the presence of sulfur, hydrogen and a hydrocarbon, ammonia and ammonium substituted molybdate, thiomolybdate, tungstate and thiotungstate salts at a temperature of from about 200.degree.-600.degree. C. These catalysts are useful for hydrotreating reactions. In a preferred embodiment, these catalysts will be promoted with certain transition metal sulfides, such as cobalt sulfide, which results in catalysts having greater activity than conventional catalysts such as cobalt-molybdate on alumina.
Abstract:
Hydrocarbon feeds are upgraded by contacting a feed, at elevated temperature and in the presence of hydrogen, with a self-promoted catalyst prepared by heating one or more catalyst precursors under oxygen-free conditions in the presence of sulfur at a temperature of at least about 150.degree. C. The catalyst precursors will be one or more compounds of the formula (ML) (Mo.sub.y W.sub.1-y S.sub.4) wherein M comprises one or more divalent promoter metals selected from the group consisting of Ni, Co, Zn, Cu and mixtures thereof, wherein y is any value ranging from 0 to 1 and wherein L is one or more neutral, nitrogen-containing ligands at least one of which is a chelating, polydentate ligand.
Abstract:
Supported hydroprocessing catalysts comprising a sulfide of trivalent chromium and molybdenum or tungsten which optionally may contain one or more promoter metals such as Co, Fe, Ni and mixture thereof. These catalysts are obtained by compositing a preselected quantity of support material with a precursor salt containing a tetrathiometallate anion of Mo or W and a cation comprising trivalent chromium and, optionally, one or more promoter metals wherein both said trivalent chromium and promoter metal are chelated by at least one neutral, nitrogen-containing polydentate ligand and heating the composite in the presence of sulfur and hydrogen in an oxygen-free atmosphere. These catalysts have high selectivity for nitrogen removal. The chromium and promoter metal do not have to be in the same cation.
Abstract:
A composition of matter comprising a mixture of (i) a sulfide of at least one promoter metal selected from the group consisting of Ni, Co, Mn, Cu, Zn and mixture thereof and mixtures thereof with Fe, (ii) an amorphous sulfide of trivalent chromium and (iii) microcrystalline of metal sulfide of a metal selected from the group consisting of molybdenum, tungsten and mixture thereof. These compositions have been found to be useful hydrotreating catalysts having nitrogen removal activity superior to that of commercial catalysts such as cobalt-molybdate on alumina.
Abstract:
This invention relates to the preparation and use of supported, manganese sulfide promoted molybdenum and tungsten sulfide catalysts useful for hydroprocessing processes, particularly hydrotreating. These catalysts are prepared by heating a composite of support material and precursor salt under oxygen-free conditions and in the presence of sulfur, wherein said precursor salt contains a thiometallate anion of Mo, W or mixture thereof and a cation comprising one or more promoter metals which are chelated by at least one neutral, nitrogen-containing polydentate ligand, and wherein said promoter metal comprises Mn alone or a mixture of Mn with Co, Ni, Zn, Cu or mixture thereof.
Abstract:
Hydrocarbon feeds are upgraded by contacting a feed, at elevated temperature and in the presence of hydrogen, with a self-promoted catalyst prepared by heating one or more catalyst precursors under oxygen-free conditions in the presence of sulfur at a temperature of at least about 150.degree. C. The catalyst precursors will be one or more compounds of the formula (ML)(Mo.sub.y W.sub.1-y S.sub.4) wherein M comprises one or more divalent promoter metals selected from the group consisting of Ni, Co, Zn, Cu and mixtures thereof, wherein y is any value ranging from 0 to 1 and wherein L is one or more neutral, nitrogen-containing ligands at least one of which is a chelating, polydentate ligand.
Abstract:
This invention relates to the preparation and use of catalysts useful for hydroprocessing processes, such as hydrotreating, wherein said catalysts are formed by heating, at elevated temperature, in the presence of sulfur and under oxygen-free conditions, a composite of support material and one or more catalyst precursor salts containing a thiometallate anion of Mo, W or mixture thereof and a cation comprising one or more divalent promoter metals at least one of which is iron, wherein said promoter metal or metals are chelated by at least one neutral, nitrogen-containing polydentate ligand, and wherein said additional divalent promoter metal, if any, is selected from the group consisting of Ni, Co, Mn, Zn, Cu and mixture thereof.