摘要:
The present invention provides a fuel cell separator and a method for surface treatment of the same, in which ionized nanoparticles are attached to the surface of a separator to form fine projections such that the surface of the separator exhibits superhydrophobicity. For this purpose, the present invention provides a method for surface treatment of a fuel cell separator which provides nanoparticles for forming fine projections on the surface of the separator to a discharge electrode and ionizes the nanoparticles by an arc discharge generated in the discharge electrode. The ionized nanoparticles are then attached to the surface of the separator by an electric field generated by applying a high voltage between the separator and the discharge electrode, thereby forming fine projections for imparting superhydrophobicity.
摘要:
The present invention provides a porous medium with increased hydrophobicity and a method of manufacturing the same, in which a micro-nano dual structure is provided by forming nanoprotrusions with a high aspect ratio by performing plasma etching on the surface of a porous medium with a micrometer-scale surface roughness and a hydrophobic thin film is deposited on the surface of the micro-nano dual structure, thus significantly increasing hydrophobicity. When this highly hydrophobic porous medium is used as a gas diffusion layer of a fuel cell, it is possible to efficiently discharge water produced during electrochemical reaction of the fuel cell, thus preventing flooding in the fuel cell. Moreover, it is possible to sufficiently supply reactant gases such as hydrogen and air (oxygen) to a membrane electrode assembly (MEA), thus improving the performance of the fuel cell.
摘要:
The present invention provides a manifold block for a fuel cell stack, coupled to a fuel cell stack module and having a gas passage and a cooling water passage. The manifold block includes an insulating member and an insulating cover. The insulating member is inserted into the cooling water passage and contacts an inner surface of the cooling water passage. The insulating member has a tube-like shape and electrically insulates the inner surface of the cooling water passage. The insulating cover is inserted into the cooling water passage and contacts an inner surface of the insulating member. The insulating cover fixes and protects the insulating member.
摘要:
The present invention provides a porous medium with increased hydrophobicity and a method of manufacturing the same, in which a micro-nano dual structure is provided by forming nanoprotrusions with a high aspect ratio by performing plasma etching on the surface of a porous medium with a micrometer-scale surface roughness and a hydrophobic thin film is deposited on the surface of the micro-nano dual structure, thus significantly increasing hydrophobicity. When this highly hydrophobic porous medium is used as a gas diffusion layer of a fuel cell, it is possible to efficiently discharge water produced during electrochemical reaction of the fuel cell, thus preventing flooding in the fuel cell. Moreover, it is possible to sufficiently supply reactant gases such as hydrogen and air (oxygen) to a membrane electrode assembly (MEA), thus improving the performance of the fuel cell.
摘要:
The present invention provides a fuel cell separator with a gasket and a method for manufacturing the same, which can prevent corrosion of the separator and improve corrosion resistance of the separator. In particular, the present invention provides a fuel cell separator with a gasket and a method for manufacturing the same, in which an adhesive is coated on the entire or partial surface of the separator, preferably by screen printing. A process of integrally molding a gasket to the separator is then performed such that the edges of the separator are not exposed to the outside after the injection molding process but, rather, are coated with the resin adhesive. The present invention thereby prevents corrosion of the separator, improves corrosion resistance of the separator, and prevents formation of burrs during the injection molding process.
摘要:
The present invention provides a fuel cell separator having an airtight gasket, in which a gasket is integrally injection-molded in a region that requires airtightness of a fuel cell separator to maintain airtightness of each flow field of the separator and to smoothly guide the fluid flow in each flow field.For this purpose, the present invention provides a fuel cell separator having an airtight gasket, which is integrally injection-molded on both surfaces of the separator to form a closed curve.
摘要:
The method of activating a vehicle fuel cell for ensuring maximum performance, improves performance of a polymer electrolyte membrane fuel cell, reduces a hydrogen usage, and has stable performance after manufactured. The method includes: placing a fuel cell in an activation device so as to be activated; changing a humidification state of a humidifier which supplies vapor to the fuel cell and a state of a cooling water; supplying a reactant gas to the fuel cell and maintaining a no-load state; maintaining a load state while changing a flow rate of the vapor and gas supplied to the fuel cell; changing the sate of the fuel cell to the no-load state, and re-supplying the reactant gas to the fuel cell; and comparing data measured when the fuel cell operates in the no-load state and data measured when the fuel cell operates in the load state respectively with a reference value.
摘要:
A clamping device includes an oblique device and a unidirectional load control plate disposed on the outside of the fuel cell stack, not on the inside of the fuel cell stack. The device can automatically compensating the surface pressure in the fuel cell stack to be maintained constant, and provide a large clamping load with a small force using the load of the fuel cell stack.
摘要:
The present invention relates to a gasket structure for use in a fuel cell having a separator which defines at each of the both ends thereof a hydrogen manifold, an air manifold, an antifreezing solution manifold between the hydrogen manifold and the air manifold, the structure comprising a plurality of gasket parts a portion of which is open toward the outside of the separator so as to prevent antifreezing solution leaked from the antifreezing solution manifold from flowing into the hydrogen manifold and the air manifold.
摘要:
The present invention provides a fuel cell stack with a water drainage structure, which can effectively drain condensed water and prevent water from flowing into unit cells by combining an end anode plate (EAP) and an end cathode plate (ECP), which are formed by modifying an anode plate (AP) and cathode plate (CP) respectively. In doing so, the modified anode plate (AP) and cathode plate (CP) are converted into a dummy cell which is positioned at the end portions of the fuel cell stack.