Abstract:
A data reception apparatus configured to discharge, prior to receiving data from an energy receiving apparatus, energy stored in a source resonator during a mutual resonance between the source resonator and a target resonator, and demodulate data received from the energy receiving apparatus based on an amount of energy reflected from the target resonator after the energy stored in the source resonator is discharged.
Abstract:
A wireless energy transmission apparatus wirelessly transmits energy through resonance between a source resonator and a target resonator. The apparatus scans an amount of energy stored in the source resonator for a scanning period, calculates a total amount of energy stored in the source resonator and the target resonator during an off-resonant interval between the source resonator and the target resonator based on the amount of energy scanned, and estimates an amount of energy induced in the target resonator based on the amount of energy stored in the source resonator and the total amount of energy calculated.
Abstract:
Aspects of the subject disclosure may include, for example, a method and apparatus for measuring a bioimpedance and performing an electrical stimulation, the method including generating a first current corresponding to a first high-frequency, generating a second current corresponding to a second high-frequency, generating a low-frequency current based on a beat phenomenon of the first current and the second current, and calculating an impedance of a target part based on a voltage induced to the target part by a high-frequency current corresponding to at least one of the first current and the second current and the low-frequency current.
Abstract:
An amplification apparatus includes an amplifier having an inverting terminal, and a non-inverting terminal connected to a reset voltage node, a first capacitor connected to the inverting terminal, an input voltage being applied to the first capacitor, a second capacitor connected to the inverting terminal and an output terminal of the amplifier, and a duty-cycled resistor, connected in parallel to the second capacitor, including a first resistor. The duty-cycled resistor is configured to connect the first resistor and the inverting terminal and to disconnect the first resistor and the reset voltage node during a first time interval included in a period to complete an on-and-off cycle of the duty-cycled resistor, and disconnect the first resistor and the inverting terminal and to connect the first resistor and the reset voltage node during a second time interval included in the period.
Abstract:
Disclosed are a medical device apparatus, system, and method. A method includes receiving biometric information, by an external device external to a body of a user, of the user from an internal device within the body of the user, and wirelessly transmitting stimulus information configured to specify a stimulus based on the biometric information, and power to the internal device configured to drive the internal device and to apply the stimulus in response to the transmitted stimulus information. A method also includes wirelessly transmitting, from an internal device in a body of a user, biometric information of the user to an external device located outside the body of the user, and wirelessly receiving from the external device stimulus information configured to specify a stimulus, and power configured to drive the internal device and to apply the stimulus to the user in response to the received stimulus information.
Abstract:
A wireless communication apparatus may include: an oscillator including a coil assembly exposed to an outside of the wireless communication apparatus, a variable capacitor, and a negative resistor; and a phase locking circuit connected to the coil assembly and the negative resistor. The phase locking circuit may be configured to generate a control signal to lock an oscillation frequency of the oscillator based on an oscillation signal generated by the oscillator, and provide the generated control signal to the variable capacitor.
Abstract:
An impedance measuring apparatus is disclosed. The impedance measuring apparatus includes an input current generator configured to generate a sinusoidal input signal of a carrier frequency, a first electrode configured to apply the sinusoidal input signal to an object which has an impedance, a second electrode configured to receive an amplitude modulated signal from the object, a first amplifier configured to amplify the received amplitude modulated signal and output a first amplified signal, a baseline signal subtractor configured to subtract a baseline signal generated based on the first amplified signal from the amplitude modulated signal and output a subtraction modulated signal, an analog-to-digital converter (ADC) configured to convert the subtraction modulated signal to a digital modulated signal, and an impedance measurer configured to measure the impedance based on the digital modulated signal.
Abstract:
A method of controlling power on a low-power device and the low-power device for performing the method are provided. The method includes performing a first operation, of acquiring sensing data, using power stored in an internal battery of the low-power device, wherein the first operation consumes a first power consumption from the internal battery; and performing a second operation, with respect to the acquired sensing data, and which consumes a second power consumption, using power wirelessly transmitted from an external device located outside of the low-power device, wherein the second power consumption is greater than the first power consumption.
Abstract:
A signal processing method, a signal filtering apparatus, and a signal processing apparatus are provided. An input signal may be input into a filter having a passband, a superfluous signal of the passband may be output from the filter, and a target signal may be obtained by subtracting the superfluous signal from the input signal.
Abstract:
Provided is a wireless power data transmission system that may transmit wireless power and may transmit data using wireless power. A wireless power transmitter may include capacitors, and may convert an electrical connection of the capacitors to a parallel connection for charging. The wireless power transmitter may also convert the electrical connection of at least two of the capacitors to a series connection for discharging.