Abstract:
A method is disclosed for monitoring the curing status of a dental resin through the inherent fluorescence of the dental resin under a curing light. The method requires no sample preparation and is fast enough for real time cure monitoring.
Abstract:
This invention discloses a spectroscopic sensor that is integrated with a mobile communication device, such as a mobile phone. The spectroscopic sensor is capable of measuring the optical spectra of a physical object for purposes of detection, identification, authentication, and real time monitoring. Through the mobile communication device, the obtained spectral information can be transmitted, distributed, collected, and shared by utilizing all the functions of the known or existing wireless communication networks.
Abstract:
A diode-pumped solid-state laser (DPSSL) has self-maintained multi-dimensional optimization. The output property of the DPSSL, including optical power, noise level, and the operation conditions of its individual components, including the drive current and temperature of the laser diode, the temperature of the laser crystals and laser cavity, the drive current of the thermoelectric coolers, is monitored and systematically optimized in real time through automatic electronic control using a microprocessor. Such monitoring and optimization enable the DPSSL to maintain its optimum performance in output power, beam quality, noise level, and stability, throughout its lifetime regardless of component aging and change of environmental conditions. A highly accurate temperature monitoring and control method is also developed.
Abstract:
This invention discloses a phototherapy apparatus for biological tissue (preferably skin tissue) treatment. The phototherapy apparatus comprises one or more light sources and a built-in ultrasonic imaging module. The ultrasonic imaging module provides a high-resolution image of the biological tissue from its surface layer to a depth of a few centimeters. The image is utilized to optimize the phototherapy procedure in parameters such as light intensity, wavelength, spot size, divergence angle, duration, repetition rate, duty cycle, etc. and to evaluate the effectiveness of the phototherapy procedure.
Abstract:
A spectroscopic diagnostic apparatus is disclosed as an aid for laser tattoo removal. The apparatus performs spectroscopic analysis of the tattooed skin before or during laser treatment, which provides composition information of the tattoo pigments and photometric information of the skin for optimizing laser treatment protocols automatically or manually. It also provides a simulated treatment result for the selected laser types.
Abstract:
A fluorescence subtracted Raman spectroscopy apparatus uses a wavelength modulated tunable filter as the spectrometer. The wavelength modulation results in an amplitude modulation on the detected optical signal. By using a frequency selective detection technique, the Raman signal is amplified and extracted from the fluorescence background.
Abstract:
The photobiomodulation apparatus (and method of use) of the present invention comprises one or more light sources which are integrated into a transparent flexible mouthpiece housing containing a semi rigid support member for providing photobiomodulation therapy to the oral mucosa of a cancer patient suffering from, or at risk of, Oral Mucositis. The light sources can be either internal, or external to the transparent flexible mouthpiece housing, and either lasers, light emitting diodes (LEDs), lamps, or any other types of light sources which produce therapeutic light in a desired wavelength range. The therapeutic light is delivered through the transparent flexible mouthpiece housing to the oral mucosa. The delivered light produces a photochemical and photophysical process e.g. increase the blood flow and circulation. This photochemical and photophysical process helps to reduce the incidence and severity of oral mucositis in cancer patients and helps improve outcomes of cancer therapy.
Abstract:
This invention provides a UV spectroscopy apparatus and method for controlled drug waste diversion detection. The spectroscopy apparatus employs sample cells which have optimized optical path length such that the measured maximum absorbance of the drug is less than the detection limit of the system. Hence the full unsaturated absorption spectrum of the drug is revealed in the UV wavelength region from 230 nm (or even down to 195 nm) to 400 nm. This full spectrum analysis improves the specificity for drug identification and the accuracy for drug concentration verification. The spectral library of the apparatus comprises the spectra of common controlled drugs, excipients, as well as typical diluents, which enables the identification of controlled drugs from different manufacturers and/or diluted with different types of diluents.
Abstract:
This invention discloses a laser assisted cold plasma device for overcoming the antimicrobial resistance and effectively killing the microbes. The microbes are first illuminated with laser light, which inactivates the antioxidant enzyme of the microbes and renders them susceptible to reactive oxygen species (ROS) attack. The microbes are then treated and killed with cold plasma. The synergy between the two treatments improves the effectiveness of microbe eradication by several orders of magnitude.
Abstract:
This invention relates to a light delivery and collection device for performing spectroscopic analysis of a subject. The light delivery and collection device comprises a reflective cavity with two apertures. The first aperture receives excitation light which then diverges and projects onto the second aperture. The second aperture is applied to the subject such that the reflective cavity substantially forms an enclosure covering an area of the subject. The excitation light interacts with the covered area of the subject to produce inelastic scattering and/or fluorescence emission from the subject. The reflective cavity reflects the excitation light as well as the inelastic scattering and/or fluorescence emission that is reflected and/or back-scattered from the subject and redirects it towards the subject. This causes more excitation light to penetrate into the subject hence enabling sub-surface measurement and also improves the collection efficiency of the inelastic scattering or fluorescence emission. The shape of the reflective cavity is optimized to further improve the collection efficiency.