Abstract:
Methods and apparatus for operating a communication system comprising three or more communication transceivers. In illustrative embodiments, multiple unique start-of-packet delimiters are maintained. A data packet to be transmitted is constructed using a specified one of the plurality of start-of-packet delimiters to demarcate the start of said data packet. The chosen start-of-packet delimiter reflects one or more transceivers that are intended recipients of said data packet. When a data packet is received by a transceiver, the start-of-packet delimiter of the received data packet is compared to one or more valid start-of-packet delimiters for the receiving transceiver. If the start-of-packet delimiter of the received data packet matches a valid start-of-packet delimiter for the receiving transceiver, the data packet is accepted, otherwise it is rejected.
Abstract:
In a disclosed embodiment, a system includes a digital imaging device, an electronic compass (e-compass), and a processor coupled to the digital imaging device and the e-compass. The processor is operable to execute instructions that cause the image device to scan a visual code, read a yaw angle from the visual code, cause the e-compass to obtain magnetic field measurements, estimate a yaw angle based on the magnetic field measurements, compare the yaw angle read from the visual code and the estimated yaw angle to determine a quality factor; and determine whether the e-compass is calibrated based at least partially upon the quality factor.
Abstract:
Methods of reducing power consumption in a USB power-delivery source device. In one such method, one or more source capabilities messages are sent by the USB power-delivery source device. If, after sending a source capabilities message, a response to said source capabilities message is not received within a predetermined time period, the device sends another source capabilities message. If, after sending a predetermined number of source capabilities messages, no response is received, the device waits an extended period of time before sending another source capabilities message. Receiving functionality of the USB power-delivery source device is turned off during some or all of said extended period of time.
Abstract:
A system and method for detecting a USB cable-type. A USB PD device configured at a near end of a USB cable is configured to (i) receive and process a signal from a device at a far end of the USB cable to determine a power rating of the USB cable and (ii) adjustably establish power delivered by the first device to the USB cable as a function of the determined USB cable power rating.
Abstract:
A system comprises a plurality of sensors, a sensor processor, and a sampling rate engine. The sensor processor is coupled to an output of each sensor of the plurality of sensors. The sensor processor estimates user dynamics in response to a first output signal of a first sensor of the plurality of sensors. The sampling rate engine is coupled to an output of the sensor processor./ The sampling rate engine determines a sampling rate value of a second sensor of the plurality of sensors in response to a user dynamics value from the sensor processor. The second sensor comprises a selectable sampling rate. The selectable sampling rate is configured in response to the sampling rate value determined by the sampling rate engine.
Abstract:
Method including detecting low user dynamics by a first MEMS sensor is provided. A first sensor determines sampling rate value corresponding to the low user dynamics. The first sensor sampling rate value is less than a second sensor sampling rate value corresponding to high user dynamics. A sampling rate of a second MEMS sensor is adjusted to the first sensor sampling rate value.
Abstract:
Methods of reducing power consumption in a USB power-delivery source device. In one such method, one or more source capabilities messages are sent by the USB power-delivery source device. If, after sending a source capabilities message, a response to said source capabilities message is not received within a predetermined time period, the device sends another source capabilities message. If, after sending a predetermined number of source capabilities messages, no response is received, the device waits an extended period of time before sending another source capabilities message. Receiving functionality of the USB power-delivery source device is turned off during some or all of said extended period of time.
Abstract:
A method for navigating using a speed sensor and a yaw rate sensor includes computing, for each of a plurality of error parameter values, a distance traveled for each of a plurality of directions of travel. The method also includes selecting the error parameter value that maximizes the distance traveled in one or more of the directions of travel, applying the selected error parameter value to data from the yaw rate sensor, and navigating using dead reckoning based on data from the speed sensor and data from the yaw rate sensor with the applied error parameter value.
Abstract:
Embodiments of the invention provide a system and method to improve the performance of a GNSS receiver using antenna switching. The system has a plurality of antennas and at least one radio frequency RF chain. There are fewer RF chain(s) than antennas. A receiver processes a plurality of signals sent by a plurality of transmitters. The system also includes antenna switches and switch controller. The method includes processing signals from a plurality of satellite vehicles SVs using an antenna selected from a plurality of antennas.
Abstract:
A system and method for detecting a USB cable-type. A USB PD device configured at a near end of a USB cable is configured to (i) receive and process a signal from a device at a far end of the USB cable to determine a power rating of the USB cable and (ii) adjustably establish power delivered by the first device to the USB cable as a function of the determined USB cable power rating.