Abstract:
A system and method for arbitrating channel access in a wireless device including co-located network transceivers are disclosed herein. A wireless device includes a first wireless transceiver and a second wireless transceiver. The first transceiver is configured for operation with a first wireless network. The second transceiver is configured for operation with a second wireless network. The wireless device further includes logic that determines which of the first and second transceivers is enabled to transmit at a given time. The logic causes the first transceiver to transmit a notification signal indicating a time period during which the second transceiver of the wireless device will perform a first wireless transaction, and during which, based on receiving the notification signal, a different wireless device performs a second wireless transaction via the second wireless network without transmitting a notification signal.
Abstract:
A device and method for controlling radio power in a wireless sensor network. A wireless sensor device includes a wireless transceiver, a white list generator, and power control logic. The wireless transceiver is configured to transmit and receive via a wireless sensor network. The white list generator configured to identify wireless sensor nodes that communicate directly with the wireless sensor device via the wireless sensor network, to identify time slots assigned for communication between the wireless sensor device and each of the identified wireless sensor nodes, and to create and maintain a list of the identified wireless sensor nodes and corresponding time slots. The power control logic is configured to power the transceiver for reception of transmissions from each identified wireless sensor node based on the identified time slots corresponding to the identified wireless sensor node provided in the list.
Abstract:
A power line communication (PLC) device comprises a processor and a memory coupled to the processor. The memory is configured to store program instructions executable by the processor to cause the PLC device perform operations. One or more time slots are sequentially scan in each of a plurality of frequency bands. A packet transmitted by a second PLC device to the PLC device over one of the plurality of frequency bands is detected. Additional packets received from the second PLC device across the plurality of frequency bands based, at least in part, upon the detected packet are synchronized. The additional packets are organized in a plurality of frames, each of the plurality of frames having been transmitted by the second PLC device to the PLC device over a respective one of the plurality of frequency bands. Each frame has a plurality of time slots, and each time slot has a pair of beacon and bandscan packets, Each bandscan packet includes information indicating a frequency band distinct from any of the plurality of different frequency bands to be used by the second PLC device to communicate with the first PLC device in a direction from the second PLC device to the first PLC device.
Abstract:
Apparatus and methods implement aggregation frames and allocation frames. The aggregation frames include a plurality of MSDUs or fragments thereof aggregated or otherwise combined together. An aggregation frame makes more efficient use of the wireless communication resources. The allocation frame defines a plurality of time intervals. The allocation frame specifies a pair of stations that are permitted to communicate with each other during each time interval as well as the antenna configuration to be used for the communication. This permits stations to know ahead of time when they are to communicate, with which other stations and the antenna configuration that should be used. A buffered traffic field can also be added to the frames to specify how much data remains to be transmitted following the current frame. This enables network traffic to be scheduled more effectively.
Abstract:
Apparatus and methods implement aggregation frames and allocation frames. The aggregation frames include a plurality of MSDUs or fragments thereof aggregated or otherwise combined together. An aggregation frame makes more efficient use of the wireless communication resources. The allocation frame defines a plurality of time intervals. The allocation frame specifies a pair of stations that are permitted to communicate with each other during each time interval as well as the antenna configuration to be used for the communication. This permits stations to know ahead of time when they are to communicate, with which other stations and the antenna configuration that should be used. A buffered traffic field can also be added to the frames to specify how much data remains to be transmitted following the current frame. This enables network traffic to be scheduled more effectively.
Abstract:
Systems and methods for establishing scheduling for charger and electric vehicle communication in a PLC system are described. In an illustrative embodiment, a method performed by a PLC device. In a further embodiment, the PLC device may be configured to operate according to a narrow-band PLC communication protocol. In a further embodiment, the narrow-band PLC communications between PLC devices in the charger and the electric vehicle are conducted over a pilot wire coupling the charger to the electric vehicle. In still a further embodiment, the pilot wire may be one of a standard set of existing wires in a standard cable used for connecting the charger to the electric vehicle.
Abstract:
A method and apparatus for dynamic medium switching in a hybrid network. A method for packet transmission by a combo device includes maintaining a wireless network confidence rating value that is indicative of packet transfer reliability of a wireless network accessed by the device. A wired network confidence rating value that is indicative of packet transfer reliability of a wired network accessed by the device is also maintained. One of the wireless network and the wired network to be used for initial transmission of the data packet is selected based on which of the wireless confidence rating value and the wired confidence rating value is indicative of a higher likelihood of the packet being successfully transmitted. The packet is routed to be transmitted via the selected network.
Abstract:
A photovoltaic system with an inverter, at least one solar panel for providing electrical power, and electrical wiring for coupling electrical power from the at least one solar panel to the inverter. Also included is a transmitter for transmitting a messaging protocol along the electrical wiring, where the protocol includes a multibit wireline signal. Also included is circuitry for selectively connecting the electrical power from the at least one solar panel along the electrical wiring to the inverter in response to the messaging protocol.
Abstract:
A network includes an intermediate node to communicate with a child node via a wireless network protocol. An intermediate node synchronizer in the intermediate node facilitates time synchronization with its parent node and with the child node. A child node synchronizer in the child node to facilitates time synchronization with the intermediate node. The intermediate node synchronizer exchanges synchronization data with the child node synchronizer to enable the child node to be time synchronized to the intermediate node before the intermediate node is synchronized to its parent node if the intermediate node has not synchronized to its parent node within a predetermined guard time period established for the child node.
Abstract:
An algorithm for the promotion of terminal nodes to switch nodes in a PLC network reduces overall network overhead and collisions, while ensuring the appropriate selection of a switch node and minimizing the number of levels in a PLC network. It also ensures that the terminal nodes with appropriate signal-to-noise ratios (SNRs) are promoted. It is desirable to have a network with fewer levels. The disclosed approach favors the nodes that are closer to the DC to promote them as switch nodes. This is achieved by waiting for a smaller number of PNPDUs for a node that is closer to the DC in comparison to a node that is farther away from the DC.