摘要:
An apparatus for implementing policy control for home gateway comprises a Co-located Policy Decision Function Entity (PD-FE) for receiving the QoS policy issued by the PD-FE at network side and sending the QoS policy to the home gateway or issuing the QoS policy configured thereon to the home gateway. A method for implementing the policy control for home gateway, the method comprises: the Co-located PD-FE receiving the QoS policy issued by the PD-FE at network side or being configured with the QoS policy; and the Co-located PD-FE issuing the QoS policy to home gateways. With the present invention, the Resource and Admission Control Function (RACF) avoids controlling the home gateway directly or sending the policy to the home gateways in the case that there are a lot of home gateways and all the home gateways are scattered at the edge of the network.
摘要:
The present invention discloses a method for selecting policy decision functional entity in the Resource and Admission Control System. The method includes that: for resource and admission control in the PULL mode, after the Transport Resource Control Function Entity (TRC-FE) receives a resource request message from the Customer Premises Equipment (CPE) or after the Policy Enforcement Function Entity (PE-FE) receives a transport layer signaling sent by CPE, if the TRC-FE or PE-FE is interacting with more than one Policy Decision Functional Entities (PD-FEs), the TRC-FE or the PE-FE may select a PD-FE according to the stored identification information of PD-FE or statically configured PD-FE, and send a resource decision request message to the selected PD-FE. With the application of the present invention, in resource and admission control in the PULL mode, after receiving the resource request initiated by CPE through the transport layer signaling message, the TRC-FE or PE-FE may select the exact PD-FE to implement the resource reservation process, thereby resolving the problem in prior art that during the resource and admission control process the TRC-FE or PE-FE can not select the exact PD-FE to send resource decision requests.
摘要:
The present invention is test structures in unused areas of semiconductor integrated circuits and methods for designing the same. In an exemplary aspect of the present invention, a method for placing test structures in a semiconductor integrated circuit includes: (a) detecting a dummy area in a semiconductor integrated circuit, the semiconductor integrated circuit including probe pads on a top metal layer; (b) filling the dummy area with active test cells, the active test cells being connected to one another; and (c) connecting each of the active test cells to the probe pads with a metal line.
摘要:
Described is a MOS gate-controlled SCR (UGSCR) structure with a U-shaped gate (UMOS) for an ESD protection circuit in an IC device which is compatible with shallow trench isolation (STI) and self-aligned silicide (salicide) fabrication technology. The UMOS gate is located in a p-substrate and is surrounded by an n-well on either side. Adjacent to one side of the UMOS gate, a first n+ diffusion is formed which straddles the first n-well. The n+ diffusion together with a p+ pickup diffused next to it form the cathode of the SCR (thyristor). Adjacent to the other side of the UMOS gate, a second n+ and p+ diffusion are formed in a second n-well. The second n+ and p+ diffusion together with the UMOS gate form the anode of the SCR and the input terminal of the circuit to be protected. The SCR is formed by the first n+ diffusion/n-well (cathode), the p-substrate, the second n-well and the second p+/n+ diffusion (anode). A latchup immune circuit is achieved by creating a U-shaped gate structure which is lined with a thick gate oxide—similar to a field oxide—under the poly gate.
摘要:
A process for forming a high dielectric constant, (High K), layer, for a metal-oxide-metal, capacitor structure, featuring localized oxidation of an underlying metal layer, performed at a temperature higher than the temperature experienced by surrounding structures, has been developed. A first iteration of this process features the use of a laser ablation procedure, performed to a local region of an underlying metal layer, in an oxidizing ambient. The laser ablation procedure creates the desired, high temperature, only at the laser spot, allowing a high K layer to be created at this temperature, while the surrounding structures on a semiconductor substrate, not directly exposed to the laser ablation procedure remain at lower temperatures. A second iteration features the exposure of specific regions of an underlying metal layer, to a UV, or to an I line exposure procedure, performed in an oxidizing ambient, with the regions of an underlying metal layer exposed to the UV or I line procedure, via clear regions in an overlying photolithographic plate. This procedure also results in the formation of a high K layer, on a top portion of the underlying metal layer.
摘要:
Described is a method of creating a MOS gate-controlled SCR (UGSCR) structure with a U-shaped gate (UMOS) for an ESD protection circuit in an IC device which is compatible with shallow trench isolation (STI) and self-aligned silicide (salicide) fabrication technology. The UMOS gate is located in a p-substrate and is surrounded by an n-well on either side. Adjacent to one side of the UMOS gate, a first n+ diffusion is formed which straddles the first n-well. The n+ diffusion together with a p+ pickup diffused next to it form the cathode of the SCR (thyristor). Adjacent to the other side of the UMOS gate, a second n+ and p+ diffusion are formed in a second n-well. The second n+ and p+ diffusion together with the UMOS gate form the anode of the SCR and the input terminal of the circuit to be protected. The SCR is formed by the first n+ diffusion/n-well (cathode), the p-substrate, the second n-well and the second p+/n+ diffusion (anode). A latchup immune circuit is achieved by creating a U-shaped gate structure which is lined with a thick gate oxide—similar to a field oxide—under the poly gate.
摘要:
A transient protection circuit is described which provides electrostatic discharge (ESD) protection for an internal circuit of an IC. The transient protection circuit comprises two Zener diodes connected in series between the input pad and the internal circuit of the IC. A sufficiently large ESD pulse will drive one the two Zener diodes into breakdown mode, thereby reducing the magnitude of the ESD pulse to the remainder of the circuit. Resistive means are paralleled with the Zener diodes to provide a signal path at non-ESD voltages. To help shunt the ESD current away from the internal circuit, PMOS and NMOS transistors are connected in parallel between the positive and the negative voltage supply and their junction is connected to the internal circuit. Negative ESD pulses cause the PMOS transistors to turn on, dumping the ESD energy into the positive voltage supply, while positive ESD pulses cause the NMOS transistors to turn on, dumping the ESD energy into the negative voltage supply. Voltage changes, caused by currents flowing through the resistive means, trigger parasitic SCRs into conduction to provide the bulk of the ESD protection.
摘要:
A method of fabricating a transistor, comprising the following steps. A silicon semiconductor structure having spaced, raised, wedge-shaped dielectric isolation regions defining an active region there between is provided. Epitaxial silicon is grown over the active area to form an SEG region. A dummy gate is formed over the SEG region. Raised epitaxial silicon layers are grown over the SEG region adjacent the dummy gate. The dummy gate is removed, exposing the interior side walls of the raised epitaxial silicon layers. Sidewall spacers are formed on the exposed sidewalls of the raised epitaxial silicon layers. A gate oxide layer is grown over the SEG region and between the sidewall spacers of the raised epitaxial silicon layers. A layer of polysilicon is deposited over the structure and is planarized to form a gate conductor over the SEG region and between the sidewall spacers of the raised epitaxial silicon layers. The sidewall spacers are removed. No HDP process trench fill is required to form the STIs and no CMP process is required to planarized the STIs.
摘要:
A method for increasing aroma and reducing fungal growth in vegetables and fruits is described. The method uses hexanal in a controlled atmosphere to treat the harvested fruit. The method has been found to be particularly effective for Penicillium sp. and Botrytis sp.
摘要:
The present invention discloses a method for selecting policy decision functional entity in the Resource and Admission Control System. The method includes that: for resource and admission control in the PULL mode, after the Transport Resource Control Function Entity (TRC-FE) receives a resource request message from the Customer Premises Equipment (CPE) or after the Policy Enforcement Function Entity (PE-FE) receives a transport layer signaling sent by CPE, if the TRC-FE or PE-FE is interacting with more than one Policy Decision Functional Entities (PD-FEs), the TRC-FE or the PE-FE may select a PD-FE according to the stored identification information of PD-FE or statically configured PD-FE, and send a resource decision request message to the selected PD-FE. With the application of the present invention, in resource and admission control in the PULL mode, after receiving the resource request initiated by CPE through the transport layer signaling message, the TRC-FE or PE-FE may select the exact PD-FE to implement the resource reservation process, thereby resolving the problem in prior art that during the resource and admission control process the TRC-FE or PE-FE can not select the exact PD-FE to send resource decision requests.