Abstract:
In a fuel metering device for an externally ignited internal combustion engine with compression of the air-fuel mixture, which system comprises a suction tube for the intake of air in which an air-measuring device and a randomly adjustable throttle valve having a flap are arranged in sequence, and in which an essentially proportionate amount of fuel is metered into the amount of air flowing therethrough, and wherein the proportionality of the fuel amount is adjustable by means of controlling a bypass circumventing the air-measuring device in dependence on engine data, there is described an improvement which comprises a valve arranged in the bypass, the said valve being controllable by the pressure prevailing in the suction tube in the vicinity of the throttle valve, a pneumatically actuated valve means adapted for controlling the valve in the bypass, and conduit means connecting the pneumatically actuated valve means with the suction tube and having an orifice in the latter which orifice is located upstream of the throttle valve, taken in the direction of air flow through the suction tube, and also upstream of the part of the flap of the throttle valve moving against the flow of air during the release of the air supply, yet still in the immediate vicinity of the said flap part.
Abstract:
In a diesel internal combustion engine comprising an air intake pipe and a throttle valve arranged in the latter, the throttle valve is equipped with a drive in order to prevent operating states which are dangerous for the internal combustion engine, e.g. uncontrolled exceeding of the allowable maximum speed due to disturbances. The drive holds the throttle valve open during trouble-free operation and moves it into a closed position during disturbances. The closed position of the throttle valve is determined in such a way that the remaining reduced air flow cross-section throttles the combustion air passing through to such an extent that the internal combustion engine still runs securely at idling speed and does not exceed a predetermined speed during feeding of a desired quantity of fuel.
Abstract:
A fuel injection pump of the distributor type in which to attain low injection rates in the idling range, longitudinal slits or longitudinal conduits are provided in the jacket face of the pump piston in accordance with the number of supply strokes of the pump piston. The slits or conduits are in continuous communication with an annular groove and the adjoining annular slide which is the quantity adjusting device of the fuel injection pump. The slits on conduits come in turn into communication with a control opening during the supply stroke of the pump piston via which opening the pump work chamber can be relieved whenever in the course of the pump piston stroke movement a second outlet opening of a relief conduit extending in the pump piston and communicating with the pump work chamber, comes into communication with the annular groove. From this point on, in order to attain quiet idling of the engine, the supply rate of the pump piston is reduced by the outflow rate, determined by a throttle of the pumped fuel into the suction chamber. By rotating the annular slide relative to the pump piston, the control opening can be moved out of the operating range of the longitudinal conduits and the quiet-idle device is shut off.
Abstract:
A control device for internal combustion engines, especially for turbocharged diesel engines. The control device is arranged to generate a control distance proportional to the amount of air supplied to the engine. The control device includes a pressure chamber charged by the intake air pressure, which is separated from the back-pressure chamber by a membrane. A stop abuts against the membrane and is scanned via an intermediate lever by a supply volume adjustment element of a fuel pump. The reference absolute pressure in the back-pressure chamber is positioned between a throttle with variable throttle diameter and a throttle with fixed throttle diameter. A vacuum pump aspirates air via the throttle with fixed throttle diameter, connected to atmospheric pressure, and the throttle with variable throttle diameter is arranged to respond to the reference absolute pressure.
Abstract:
A fuel injection nozzle is proposed, intended in particular for Diesel engines, in which an induction coil is installed in an intermediate disc. The coil core is embodied by a pressure element and a valve needle in force-locking contact therewith. An annular permanent magnet is secured either on the pressure bolt or on the intermediate plate. This embodiment of an injection nozzle, as a so-called needle stroke transducer, is used when it is desired to ascertain the duration of injection and especially the onset of injection.
Abstract:
A fuel injection pump for internal combustion engines is proposed in which cavitation is avoided at the sealing surface between a threaded connection element which contains the pressure valve and a securing flange of the pressure valve housing which protrudes radially outwardly therefrom. The securing flange is attached to a cylindrical portion on the end of the valve housing remote from the pressure line leading to the injection nozzle and a sealing member is fitted into an intermediate chamber between the cylindrical portion and an inner wall of the threaded connection element. This sealing member is pressed with at least one annular contact surface onto the cylindrical housing portion and with a different contact surface, axially displaced with respect to the first, is pressed against the threaded connection element. The sealing member may be embodied as a thin-walled sheet-metal sleeve, may comprise a spiral spring, or may be made of plastic.
Abstract:
The invention relates to a fuel injection system provided with a pump and at least one nozzle, in which the fuel quantity which collects by leakage in the spring chamber of the nozzle for the purpose of limiting the speed of the needle as it opens flows out through a throttle valve in a controlled manner. The throttle valve is controlled in accordance with engine characteristics.
Abstract:
A fuel injection system employing continuous injection into the induction manifold for varying the fuel-air ratio during the warm-up phase of the engine. A pivoting flap responds to the air flow through the induction tube and rotates a metering valve core. Openings in this valve core cooperate with openings in the valve cylinder to form a metering valve aperture of variable cross-section. The pressure differential across this aperture influences the metered fuel quantity and this pressure differential can be varied during the warm-up phase of the engine. The variation in the pressure differential is accomplished by heating a bi-metallic spring which disengages from the closure element of a diaphragm valve, increasing the closing bias thereof. The resulting increase in fuel pressure downstream of the metering aperture displaces a piston which removes the additional biasing force on another diaphragm valve, permitting the reduction of fuel pressure upstream of the metering aperture with the net effect of a reduction of the pressure differential across the metering aperture and a corresponding reduction of the metered fuel quantity, i.e., a leaning out of the fuel-air mixture.
Abstract:
A fuel injection system for externally ignited internal combustion engines in which a fuel metering and distributing valve is controlled by an air sensing element disposed in the air suction tube of the engine and by structure which is adapted to alter the restoring force exerted on the air sensing element through the fuel metering and distributing valve. The noted structure includes a control pressure conduit, a pressure control valve connected to the control pressure conduit and a further conduit for connecting the pressure control valve to the suction tube of the engine downstream of the butterfly valve. With this structure it is possible to alter the restoring force mentioned above so that a properly proportioned fuel-air mixture is achieved, and in particular, so that a properly enriched fuel-air mixture is achieved during full load operation.
Abstract:
A fuel injection system for externally ignited internal combustion engines in which fuel is individually metered to each injection valve through mutually displaceable metering valves. A diaphragm-type pressure valve is disposed between each metering valve and each injection valve. One of these valves is a differential pressure valve, which maintains a constant pressure difference across the metering valve to which it is connected. The remainder of these diaphragm valves are pressure equalizing valves, controlled by the output pressure of the differential pressure valve to maintain the same constant pressure difference across each of the remaining metering valves. The injection valve supplied with fuel by the differential pressure valve, opens at a higher fuel pressure than the remaining injection valves, thus also serving as a pressure valve. Additionally, the pressure setting of the differential pressure valve can be changed, when required, in dependence on a particular engine parameter by other control means.