Abstract:
A power output circuit includes a charge pump, a voltage regulator, a clock generator and a voltage detector. The charge pump is used for receiving a clock signal having an operating frequency and outputting an output voltage. The voltage regulator, coupled to the charge pump, is used for outputting a control voltage to the charge pump, to control the output voltage. The clock generator, coupled to the charge pump, is used for outputting the clock signal to the charge pump. The voltage detector, coupled to the clock generator and the voltage regulator, is used for detecting the control voltage and controlling the clock generator to adjust the operating frequency of the clock signal according to a magnitude of the control voltage.
Abstract:
An interior distributing system includes a remote control, a controller, and at least one home electrical appliance. The remote control includes at least one buttons, and the button is used for triggering an corresponding operation command. The controller receives the operation command of the remote control. The home electrical appliance is located within a control area able to receive signals from the controller. While the controller receives the operation command of the remote control, the controller transmits the operation command to the home electrical appliance and the home electrical appliance performs a process task in response to the operation command.
Abstract:
A frequency selecting module for a touch system includes a storage unit, for storing a sum of at least one of a plurality of sensing signals of a plurality sensing channels in the touch system; a spectrum calculating unit, for transforming the sum of the at least one of the plurality of sensing signals stored in the storage unit to generate a spectrum data and storing the spectrum data to the storage unit; and a selecting unit, for generating an adjusting signal according to the spectrum data to select one of a plurality of operation frequencies as a working frequency of the plurality of sensing signals.
Abstract:
The LCD device comprises a plurality of scan groups and a plurality of data electrodes; each scan group comprises a plurality of scan electrodes. The driving method comprises the following steps. First the scan driving circuit provides a plurality of scan signals to the plurality of scan electrodes of the plurality of scan groups, respectively. Each scan signal includes at least a select signal, at least a non-select signal, at least a select cycle, and at least a non-select cycle. The select signal is located in the select cycle, while the non-select signal, the non-select cycle. When an Nth scan electrode is located in the select cycle, an (N−1)th or (N+1)th scan electrode of the plurality of scan electrodes is located in the non-select cycle. Then, the data driving circuit provides a data signal to each of the data electrodes according to a plurality of display data for driving the LCD device to display an image by using the plurality of scan signals and the plurality of data signals. Thereby, the imbalance wire coupling effect among scan electrodes can be eliminated and thus improving the display efficiency of the LCD device.
Abstract:
The present disclosure provides a capacitor voltage information sensing circuit. The capacitor voltage information sensing circuit includes a mixer and an analog filter. The mixer includes a first input terminal for receiving a reference signal, a second input terminal for receiving a voltage signal, the voltage signal includes capacitor voltage information and a noise when a touch occurs, a first output terminal for outputting a first differential signal according to the voltage signal and the reference signal, and a second output terminal for outputting a second differential signal according to the voltage signal and the reference signal. The analog filter is coupled to the mixer for generating a first low-frequency signal and a second low-frequency signal according to the first differential signal and second differential signal.
Abstract:
An active probe card capable of improving testing bandwidth of a device under (DUT) test includes a printed circuit board; at least one probe needle, affixed to a first surface of the printed circuit board for probing the DUT; at least one connection member, electrically connected to the at least one probe needle; and an amplification circuit, formed on the printed circuit board and coupled to the at least one connection member for amplifying an input or output signal of the DUT.
Abstract:
The present disclosure provides a method of reusing electrical energy for a charge pump. The method comprises operating in a reusing phase after a boosting phase is completed; retrieving energy of parasitic capacitance in the reusing phase; and reusing the energy of the parasitic capacitance for an internal circuit.
Abstract:
An integrated circuit (IC) testing interface capable of upgrading an automatic test equipment (ATE) for testing a semiconductor device includes at least one pin for receiving or transmitting at least a test signal to a tester of the automatic test equipment, a plurality of digitizers coupled to the at least one pin for generating a digital signal, a processing means coupled to the plurality of digitizers for processing the digital signal, and a connection unit for connecting the processing means with a computing device for transmitting an output signal from the processing means to the computing device, where the IC testing interface is disposed between the tester and a prober of the automatic test equipment.
Abstract:
The present invention relates to a scan driving circuit, which comprises a decoding circuit, a plurality of level-shift driving circuits, and a control circuit. The decoding circuit produces a decoding signal according to a decoding control signal. The plurality of level-shift driving circuits are coupled to the decoding circuit and produce scan signal sequentially according to the decoding signal. The control circuit is coupled to the plurality of level-shift driving circuit. The control circuit produces a first control signal and a second control signal according to the decoding control signal and transmits the first and second control signals to the plurality of level-shift driving circuits for controlling their turning on and off. Accordingly, by means of the control circuit according to the present invention, the circuit area of each level-shift driving circuit can be reduced, and thus the cost can be reduced as well.
Abstract:
A power conversion system in an electronic device is utilized for converting an input voltage of a power source terminal to a required voltage of a load circuit to provide power to the load circuit. The power conversion system includes a first voltage conversion circuit for converting the input voltage to the required voltage of the load circuit according to a first control signal; and a power control module for generating the first control signal according to a starting signal or a load voltage of the load circuit; wherein the load circuit receives the voltage outputted from the first voltage conversion circuit to perform operations.