Abstract:
An apparatus for removing harmful gas components out of the earth's atmosphere is a free-flying autonomous lightweight aircraft with an onboard gas processing system including gas separation or extraction devices, and inlets and outlets connected to the devices. Solar cells and/or thermoelectric generators provided on the craft produce electrical energy to operate the individual devices. The system may include a cryogenic closed-loop circulation system that participates in liquefying the extracted gas components. The apparatus is preferably a lighter-than-air craft like a dirigible. A method of extracting harmful gas components from the atmosphere involves flying the apparatus at a prescribed altitude level and operating the gas processing system to remove the harmful gas component from the atmosphere, then returning the apparatus to earth to offload the liquefied stored harmful gas component.
Abstract:
An airship system according to the invention has an airship (110), a base station (120), and at least three measurement points. The airship (110) emits ultrasonic waves upon receiving an instruction from the base station (120). Measurement point units (S1-S3) receive the ultrasonic waves, and thereby measure distances from the airship (110) to the respective measurement points. An MPU that is incorporated in the base station (120) calculates a position of the airship (110). The base station (120) controls a route of the airship (110) based on the calculated position by sending a flight instruction to the airship (110). In this manner, an airship system can be provided that makes it unnecessary for an operator to pilot the airship and that can reduce the load weight and the power consumption of the airship.
Abstract:
A method of controlling an aero wind power generation device, includes take-off preparation process of preparing for take-off of the aero wind power generation device; a gas injection process of injecting gas into a buoyancy generation unit of the aero wind power generation device; a take-off process of taking off the aero wind power generation device using a drone unit and the buoyancy generation unit of the aero wind power generation device; and a charging process of charging a battery connected to the aero wind power generation device using the aero wind power generation device.
Abstract:
An autonomous unmanned aerial vehicle detecting system for monitoring a geographic area includes an unmanned blimp adapted to hover in air, at least one camera mounted on the blimp to scan at least a portion of the geographic area, a location sensor to determine a location of the blimp, and a controller arranged in communication with blimp, the at least one camera, and the location sensor. The controller is configured to position the blimp at a desired location in the air based on inputs received from the location sensor, and monitor the geographic area based on the images received from at least one camera. The controller is also configured to detect a presence of an unmanned aerial vehicle within the geographic area based on the received images, and determine whether the detected unmanned aerial vehicle is an unauthorized unmanned aerial vehicle based on the received images.
Abstract:
A passive control system can be implemented that converts an active control system on a multi-rotor unmanned aerial vehicle (UAV) to a passive control system. In the event that a system health of an active control system on the UAV is compromised, or in other instances, a passive control mechanism can be deployed to restore at least some in-flight stability. In various examples, the passive control system can monitor UAV attitude, velocity, and position to determine an active control system health. In other examples, the passive control system may receive an indication from the active control system itself. In some examples, the passive control mechanisms may include increasing an offset of a center of thrust and the center of gravity of the UAV. In other examples, the passive control mechanisms may include deploying control surfaces that induce a drag force that impedes translational and rotational movement.
Abstract:
Disclosed herein are example embodiments for unoccupied flying vehicle (UFV) location assurance. For certain example embodiments, at least one machine, such as a UFV, may: (i) obtain one or more satellite positioning system (SPS) coordinates corresponding to at least an apparent location of at least one UFV; or (ii) perform at least one analysis that uses at least one or more SPS coordinates and at least one assurance token. However, claimed subject matter is not limited to any particular described embodiments, implementations, examples, or so forth.
Abstract:
A hybrid airship (drone, UAV) capable of significantly extended flight times can use one of two technologies, or both together. The first technology uses a combination of a lifting gas (such as hydrogen or helium) in a central volume or balloon and multirotor technology for lift and maneuvering. The second technology equips the airship with an on board generator to charge the batteries during flight for extended flight operations, with an internal combustion engine (such as a high power to weight ratio gas turbine engine) driving the generator. A quadcopter or other multicopter configuration is desirable.
Abstract:
Disclosed herein are example embodiments for unoccupied flying vehicle (UFV) location assurance. For certain example embodiments, at least one machine, such as a UFV, may: (i) obtain one or more satellite positioning system (SPS) coordinates corresponding to at least an apparent location of at least one UFV; or (ii) perform at least one analysis that uses at least one or more SPS coordinates and at least one assurance token. However, claimed subject matter is not limited to any particular described embodiments, implementations, examples, or so forth.
Abstract:
The present invention is a variable geometry lighter-than-air (LTA) aircraft that is adapted to morph its shape from a symmetric cross-section buoyant craft to an asymmetric lifting body and even to a symmetric zero lift configuration. The basic structure is a semi rigid airship with movable longerons. Movement of the longerons adjusts the camber of the upper and/or lower surfaces to achieve varying shapes of the lifting-body. This transformation changes both the lift and drag characteristics of the craft to alter the flight characteristics. The transformation may be accomplished while the craft is airborne and does not require any ground support equipment.
Abstract:
The present invention relates to an electrochemical cell characterised in that it comprises at least a positive electrode which comprises manganese physically separated from at least a negative electrode which comprises an aluminium alloy, and wherein said positive and negative electrodes are electrically connected through a neutral pH electrolyte. Further, the present invention relates to the use of the electrochemical cell, preferably as a button battery in hearing aids.