Abstract:
An interferometric system includes a polarization separation element (10), a first polarization conversion element (11), a Mach-Zehnder interferometer (2) including a first (4) and second (5) arms connected to one another by a first (6) and second (7) ends in order for a first and second beams (20, 21) having the same polarization to pass through the interferometer in a reciprocal manner in opposite directions of propagation, respectively, so as to form a first and second interferometric beam (22, 23), a second polarization conversion element (11) for obtaining an interferometric beam (24), the polarization of which is converted, a polarization-combining element (10), and a detection element (8) suitable for detecting an output beam (25).
Abstract:
A wavelength shift measuring apparatus of the present invention is a wavelength shift detection sensor (WLCD1) which measures a shift of a wavelength of a light beam emitted from a light source, and includes a beam splitter (BS2) splitting the light beam emitted from the light source into a plurality of light beams and to synthesize two light beams among the plurality of light beams to generate an interference light, a spacer member (SP) provided so that an optical path length difference of the two light beams split by the beam splitter (PBS2) is constant, and a plurality of photoelectric sensors (PD) detecting the interference light generated by the beam splitter (BS2). The plurality of photoelectric sensors (PD) output a plurality of interference signals having phases shifted from one another based on the interference light to calculate a wavelength shift using the plurality of interference signals.
Abstract:
In general, in one aspect, the invention features methods that include interferometrically monitoring a distance between an interferometry assembly and a measurement object along each of three different measurement axes while moving the measurement object relative to the interferometry assembly, determining values of a parameter for different positions of the measurement object from the monitored distances, wherein for a given position the parameter is based on the distances of the measurement object along each of the three different measurement axes at the given position, and deriving information about a surface figure profile of the measurement object from a frequency transform of at least the parameter values.
Abstract:
Interferometry apparatus which comprises a measurement light beam (2a, 2b) and a reference light beam (2c, 2d) which interact with each other to cause a spatial fringe pattern (24). An optical device (12) is provided which interacts with the spatial fringe pattern (24), such that light is spatially separated into different directions (30, 32, 34, 36). The intensity modulation in two or more directions of the spatially separated light is phase shifted. The optical device may comprise, for example, a diffractive device, a refractive device or a diffractive optical element.
Abstract:
A fiber optic scanning interferometer in a Michelson arrangement using a polarization splitting coupler is disclosed. The splitting of s and p polarization modes into the fast and slow axes of a birefringent fiber allows the temporal separation of interference phenomena from multiple reflections such that signal recovery is simplified.
Abstract:
A method and apparatus for polarization-independent RF spectrum analysis of an optical source, the apparatus including a coupler for coupling the light from an optical source under test with light from a continuous-wave (CW) laser. A nonlinear apparatus is coupled to the coupler for modulating the electric field of the light from the CW laser using the temporal intensity of the light from the source under test to generate a modulated signal. The nonlinear apparatus is adapted to mitigate or compensate for any phase difference between polarization components of signals propagated through the nonlinear apparatus. A polarizer is coupled to the nonlinear apparatus for generating a linearly polarized signal from the modulated signal. An optical spectrum analyzer is coupled to the polarizer for measuring the optical spectrum of the linearly polarized signal to determine an RF spectrum of the optical source under test.
Abstract:
Disclosed is an inspection method and apparatus: wherein (i) first light having a first state of polarization and a first wavelength, and (ii) second light having a second state of polarization, different from the first state of polarization, and a second wavelength, different from the first wavelength are produced; at least the first light is projected to a position of inspection; and heterodyne interference light produced on the basis of the second light and light scattered at the inspection position and having its state of polarization changed, by the scattering, from the first state of polarization, is detected.
Abstract:
A method and apparatus for measuring nonreciprocal optical effects contemplates directing two circularly polarized optical beams having a known phase relation to each other at a sample, and detecting the difference in phase between the two beams after they have encountered the sample. In a transmission measurement the two circularly polarized beams have the same handedness, but pass through the sample in opposite directions. In a reflection measurement, the two circularly polarized beams have opposite handedness, but encounter the sample in the same direction. In a particular embodiment of the invention a linearly polarized beam is introduced into a Sagnac interferometer and split into two linearly polarized beams which are ultimately recombined.
Abstract:
A method and apparatus for monitoring process fluids used in the manufacture of semiconductor components and other microelectronic devices relies upon detection of the phase shift of a pair of optical energy beams encountering a bubble or particle in the fluid. The system distinguishes between bubbles and particles having indices of refraction greater than the surrounding fluid and between different types and sizes of particles.
Abstract:
An apparatus is described for classifying particles and includes an optical system for transmitting to a focal plane which includes at least one particle, two substantially parallel optical beams, the beams being initially mutually coherent but of different polarizations. The beams are displaced and focused in the focal plane. A further optical system is positioned in the path which the beam takes after depating from the focal plane and combines the beams so that a particle-induced phase shift in one beam is manifest by a change in elliptical polarization of the combined beams. A first detector is responsive to the beam's intensity along a first polarization axis to produce a first output and a second detector is responsive to the beams intensity along a second polarization axis to produce a second output. The first and second outputs are added to provide an extinction signal and, in a separate device, are subtracted to provide to phase shift signal. The extinction signal and phase shift signal are both fed to a processor which classifies a particle in accordance therewith.